
CS	240	in	context

Devices	(transistors,	etc.)

Solid-State	Physics

Ha
rd
w
ar
e

H

Digital	Logic

Microarchitecture

Instruction	Set	Architecture

Operating	System

Programming	Language

Compiler/Interpreter

Program,	Application,	Algorithm

So
ft
w
ar
e

Ho
w
	C
om

pu
te
rs
	W

or
k1

Security	+	Reliability
Trickiest	exploits	&	errors

involve	multiple	layers, even	hardware!

Performance
Memory:	clever,	imperfect	abstraction.

Tiny	code	changes,	huge	impact.

Representation
No	representation	without	taxation.	

Representations	have	costs.

Abstraction
Do	not	start	every	project	with	transistors.
Abstraction	is	beautiful	and	empowering,

but	real	abstractions	have	leaks	and	wrinkles.

These	things	matter	more	every	day.

Translation
Between	layers	of	abstraction.

Structured	computation.

Big	Ideas	in	CS,	Systems,	and	beyond2

Ariane 5	Rocket,	1996
Exploded	due	to	cast	of
64-bit	floating-point	number	
to	16-bit	signed	number.
Overflow.

1998
Mars	Climate	Orbiter
Disintegrated	due	to	
mismatched	units	in	
Lockheed-Martin	/	NASA	
software	components.

http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-%E2%80%9Cspaghetti%E2%80%9D-code

Toyota	"Unintended	Acceleration	Events"
Oklahoma	jury:
"Spaghetti	Code"	=	"reckless	disregard"

>10,000	global	variables
81,514	violations	of	MISRA-C	coding	rules

Expect	3	minor	bugs	+	1	major	bug	per	30	violations

Task/process	monitoring	failed	to	monitor	tasks/processes
Memory	corruption

(Wait,	it	was	written	in	C?!?!?!)

"...	a	Model	787	airplane that	has	been	powered	
continuously	for	248	days	can	lose	all	alternating	
current	(AC)	electrical	power	due	to	the	generator	
control	units	(GCUs)	simultaneously	going	into	
failsafe	mode	...	This	condition	is	caused	by	a	
software	counter internal	to	the	GCUs	that	will
overflow after	248	days of	continuous	power.	We	
are	issuing	this	AD	to	prevent	loss	of	all	AC	
electrical	power,	which	could	result	in	loss	of	
control	of	the	airplane."		--FAA,	April	2015

https://xkcd.com/571/

How	could	we	improve	computer	systems?
Security

Efficiency
Speed
Space
Programmer
Cost,	availability

What	a	simple	phone	can	do	for	people:	https://opendatakit.org/about/deployments/

Energy,	materials
A few	of	the	impacts	we	usually	don't	see:
http://www.nytimes.com/2015/06/07/magazine/making-and-unmaking-the-digital-world.html?_r=0

Reliability

…

1
0

(image:	CC	BY-SA,	©	William	Hook) (image:	CC	BY-NC-SA,	©	jntolva)

(image:	CC	BY-SA,	©	Kentaro	IEMOTO@Tokyo)

1
1

shared-memory	multithreading

shared memory:
heap	(objects),
global	variables

memory	access
thread	1

thread	2
thread	3

private
execution	context:
program	counter

call	stack
registers
}

multithreaded	voting	service

1
2

class Candidate {
int votes;
...
void addVote() {

votes++;
}

}

Candidate
votes:	13

thread	1

thread	2

thread	3

c.addVote();

c.addVote();

c.addVote();

thread	1 thread	2 votes

0

votes++; ?

votes++; ?

concurrent	accesses

1
3

thread	1 thread	2 votes

0

int v1 = votes; 0
votes = v1 + 1; 1

int v2 = votes; 1
votes = v2 + 1; 2

concurrent	accesses

1
4

thread	1 thread	2 votes

0
int v2 = votes; 0

int v1 = votes; 0
votes = v1 + 1; 1

votes = v2 + 1; 1 ✘

concurrent	accesses

1
5

✘

Problem	1: each	thread’s	increment	should	happen	“as	one.”

Problem	2: two	threads	accessed	votes “at	the	same	time.”
(data	race)

1
6

normal blackout

Northeast	Blackout,	2003
caused	in	part	by	a	software	concurrency	error

(images:	public	domain)

despite	“in	excess	of	3	million	online	operational	hours”	-Mike	Unum,	GE	Energy

thread	1 thread	2
int v2 = votes;

int v1 = votes;

votes = v1 + 1;

votes = v2 + 1;

data	race

1
7

Two	memory	accesses:

1. to	the	same	memory	location

2. by	different	threads

3. at	least	one	access	is	a	write

4. the	accesses	are	not	ordered	by	synchronization

synchronization	with locks

1
8

class Candidate {
int votes;
Lock l = new Lock();

void addVote() {
l.lock();
votes++;
l.unlock();

}
}

Zero	or	one	threads	can	hold a	
mutual	exclusion	lock at	a	time.

only	one	thread	at	a	time

Synchronization	orders	events	in	separate	threads	to	
control	access	to	shared	data.

thread	1 thread	2 votes l

0 -
l.lock(); 0 T1
int v1 = votes; 0 T1
votes = v1 + 1; 1 T1
l.unlock(); 1 -

l.lock(); 1 T2
int v2 = votes; 1 T2
votes = v2 + 1; 2 T2
l.unlock(); 2 -

synchronization	with locks

1
9

Is	there	a	
data	race?

data	race
two	memory	accesses:
• to	the	same	memory	location
• by	different	threads	
• at	least	one	write
• not	ordered	by	synchronization.

thread	1 thread	2 votes l

0 -
l.lock(); 0 T2
int v2 = votes; 0 T2
votes = v2 + 1; 1 T2
l.unlock(); 1 -

l.lock(); 1 T1
int v1 = votes; 1 T1
votes = v1 + 1; 2 T1
l.unlock(); 2 -

synchronization	with locks

2
0

Data	races	are	errors!

2
1

• unpredictable outcome

• unintuitive semantics	in	Java

• undefined semantics	in	C/C++

Data	races	should	be	exceptions.
[Elmas	et	al.,	PLDI	2007;	Marino	et	al.,	PLDI	2010;
Lucia	et	al.,	ISCA	2010;	Adve	and	Boehm,	CACM	Aug.	2010;	...]

Java C/C++
array	index	out	

of	bounds exception unintuitive
unsafe

data	race unintuitive
unsafeexception

thread	1 thread	2
int v1 = votes;

votes = v1 + 1;

int v2 = votes;

data race	exceptions

2
2

exception

✘

implementing	exceptions

2
3

if (c == null) {
throw new NullPointerException();

}
c.addVote();

null	pointer	
deference

if (i < 0 || array.length <= i) {
throw new
ArrayIndexOutOfBoundsException(i);

}
array[i] = 13;

array	index	out	
of	bounds

????????
votes = 13;

data	race

Software	data	race	exceptions	are	slow.

24

0

5

10

15

20

25

Vector Clocks FastTrack

sl
ow

do
w

n
in

 ×

native

Recipe:
• Access	history	of	every	memory	location

• Check/update	on	every	memory	access.
• Sync	history	of	every	lock

• Update	on	every	lock	operation.

Radish: faster + accurate

2
5

0

1

2

3

4

blackscholes fluid streamcluster swaptions vips x264 (mean)

Ra
di

sh
 s

lo
w

do
w

n
in

 ✕

PARSEC	benchmarks	(C)

native

computer	architecture

programming	languages

compilers run-time	
systems

Radish	slowdown	vs.	native	execution

[ISCA	2012]

data	race
exceptions{

2
6

software	reliability	toolbox

run-time	systems

computer	architecture

programming	languages
&	program	analysis

compilers

software	engineering	tools

hardware	implementation
[ASPLOS	2014]

Knowledge	of	program

Efficient	checking	
mechanisms

reuse memory locations

move objects to new memory locations

add accesses

add synchronization

schedule language threads on hardware threads

27

tra
ns

lat
io

n

hardware

Java

Translation affects data races.

[ASPLOS	2014]

2
8

Fast	(HW)	+	Accurate	(SW)

Radish	+	LARD	support

Java	data-race	exceptions

JVM	+	LARD	events
x86	+	LARD	interface

extended	HW

modified	JVM

extended	ISA

[ISCA	2012,	ASPLOS	2014]

Skills	for	Thinking
and	Programming

Few	of	you	will	build	new	HW,	OS,	compiler,	but…
1. Effective	programmers	understand	their	tools	and	systems.
2. The	skills	and	ideas	you	learn	here	apply	everywhere.

Reason	about	computational	models,	translation.

Debug	for	correctness	and	performance	(with	tools	to	help).

Assess	costs	and	limits	of	representations.

"Figure	it	out"	via	documentation,	experiments,	critical	thinking.

3

CS	240:
Computer Systems/Organization

CS	3??:
Operating	Systems

CS	251:
Programming
Languages

CS	301:	Compilers
and	Runtime	Systems

CS	342:
Computer	Security

CS	3??:
Computer Architecture

CS	249:	Scientific	and	
Parallel	Computing

Research

CS	242:
Computer Networks

Foundations

CS	349:
Distributed Computing

CS	304:
Databases with	
Web	Interfaces

4

