CS 240 in context

/ Program, Application, Algorithm
Programming Language

Compiler/Interpreter

Operating System

Software

e/

Instruction Set Architecture

Microarchitecture

Digital Logic

Devices (transistors, etc.)

How Computers Work

) Micoarchitectwre
- S
(©
y vevallogic
E
S
(C
L

Solid-State Physics

Big Ideas in CS, Systems, and beyond

Abstraction

Do not start every project with transistors.
Abstraction is beautiful and empowering,
but real abstractions have leaks and wrinkles.

Translation Representation

Between layers of abstraction. i No representation without taxation.
Structured computation. Representations have costs.

Performance Security + Reliability

Memory: clever, imperfect abstraction. Trickiest exploits & errors
Tiny code changes, huge impact. involve multiple layers, even hardware!

These things matter more every day.

How to Detect Exploits of the GHOST Buffer Overflow
Vulnerability

Wednesday, February 11, 2015 Swati Khandelwal

g+ 75 713 593 W Tweet 250 [[J Share 5

DETECTING GHOST

VULNERABILITY

The GHOST vulnerability is a buffer overflow condition that can be easily exploited loc

remotely, which makes it extremely dangerous. This vulnerability is named after the GetHOST

function involved in the exploit.

HOME PAGE | MY TIMES | TODAY'S PAPER | VIDEO | MOST POPULAR | TIMES TOPICS

€he New Jork Times .
4 Business

WORLD U.S. N.Y./REGION BUSINESS TECHNOLOGY = SCIENCE HEALTH SPORTS @ (

MEDIA & ADVERTISING WORLD BUSINESS SMALL BUSINESS YOUR MONEY DEALBOOK MA}

S&P DOW JONES
INDICES

McBRAW HILL FINANCIAL unmatched innﬂvation

5 =

A Heart Device Is Found Vulnerable to Hacker Atta

By BARNABY J. FEDER

Published: March 12, 2008

W TWITTER
To the long list of objects vulnerable to attack by computer hackers, [LINKEDIN
add the human heart. SIGN IN T
E-MAIL Ol
. . THIS
The threat seems largely theoretical. But a team of computer security
researchers plans to report Wednesday that it had been able to gain S PRINT
[@ REPRINT:

wireless access to a combination heart defibrillator and pacemaker.

Ariane 5 Rocket, 1996

Exploded due to cast of
64-bit floating-point number |
to 16-bit sighed number.
Overflow.

1998
Mars Climate Orbiter

Disintegrated due to
mismatched units in

Lockheed-Martin / NASA
software components.

Toyota "Unintended Acceleration Events”

Oklahoma jury:
"Spaghetti Code" = "reckless disregard”

>10,000 global variables
81,514 violations of MISRA-C coding rules

Expect 3 minor bugs + 1 major bug per 30 violations

Task/process monitoring failed to monitor tasks/processes
Memory corruption

(Wait, it was written in C?1?1?])

http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-%E2%80%9Cspaghetti%E2%80%9D-code

.- 1,306... 1,307...

BAAA

"...a Model 787 airplane that has been powered
continuously for 248 days can lose all alternating
current (AC) electrical power due to the generator
control units (GCUs) simultaneously going into
failsafe mode ... This condition is caused by a
software counter internal to the GCUs that will
overflow after 248 days of continuous power. We
are issuing this AD to prevent loss of all AC
electrical power, which could result in loss of
control of the airplane." --FAA, April 2015

0. 32,767...-32,768...| |...-32,767...-32,766 ...

ATE L 5T

I\

d

How could we improve computer systems?

Security

Efficiency
Speed
Space
Programmer

Cost, availability
What a simple phone can do for people: https://opendatakit.org/about/deployments/

Energy, materials

A few of the impacts we usually don't see:

http://www.nytimes.com/2015/06/07/magazine/making-and-unmaking-the-digital-world.html|? r=0

Reliability

(image: CC BY-SA, © William Hook) (image: CC BY-NC-SA, ©

shared-memory multithreading

private
execution context:
program counter
call stack

registers J

thread 1_

mMemory daCCcess

t

hread 2

thread 3

\/

r

M

shared memory:

heap (objects),
global variables

ﬁ

multithreaded voting service

class Candidate { thread 3
int votes;

void addVote() {

votes++; thread 1 Ic.addVote() ;
} c.addVote();
}
thread 2
ICandidate

\/ votes: 13
c .addVote(); /

\/

concurrent accesses

thread 1 thread 2 votes
0
votes++; ?

votes++; ?

concurrent accesses

thread 1 thread 2 votes
0)
int vl = votes; 0)
votes = vl + 1; 1
int v2 = votes; 1

votes = v2 + 1; 2

concurrent accesses

[Problem 1: each thread’s increment should happen “as one.”

thread 1 thread 2 votes
0
int v2 = votes; 0)

int vl = votes; 0)
votes = vl + 1; 1
votes = v2 + 1; 1 X

p
Problem 2: two threads accessed votes “at the same time.”
!data race)

Northeast Blackout, 2003
caused in part by a software concurrency error

=

o)
Lr /
P

e <
4{’ m

b
!

(images: public domain)

normal blackout

despite “in excess of 3 million online operational hours” -Mike Unum, GE Energy

data race

Two memory accesses:
1. to the same memory location
2. by different threads

3. at least one access is a write

4. the accesses arelnot ordered by synchronization

thread 1 thread 2

int v2 = votes;

int vl = votes;_.
votes = vl + lfff’”'

-F?fvotes = v2 + 1;

synchronization with locks

Synchronization orders events in separate threads to
control access to shared data.

class Candidate {

int votes; Zero or one threads can hold a
Lock 1 = new LocKk(); € mutual exclusion lock at a time.

void addvVote() {
m‘ l.lock();

. votes++; <—— gnly one thread at a time
N

| l.unlock();

}

}

synchronization with locks

A

thread 1 thread 2

(T l.lock();

?

votes = vl + 1; data race:

N \ 4

. l.unlock();
l.locﬁ();
data race int V% - votes:

two memory accesses:
e tothe same memory location
e by different threads l.unlock();

e atleast one write

e not ordered by synchronization.

votes = v2 + 1;
M N

J

votes

N N R R R B O O

1

T1
T1
T1

T2
T2
T2

synchronization with locks

thread 1

(w l.lock();

N

|

int v£'= votes;
votes = vl + 1;

l.unlock();

thread 2

l.lock();
¥

int V% = votes;

votes = v2 + 1;

l.unlock();

.

|

votes

N N R R R B O O

1

12
12
T2

T1
T1
T1

Data races are errors!

e unpredictable outcome
e unintuitive semantics in Java

e undefined se

Veuillez redémafrer
de démarrage enfi

Sie mussen lhren

i die Finschalttaste den gadr.l‘;ckt oder driicken it
d rray : Sie die Neustart-T |t|Ve

of b V¥ —5 E BT DT, KT— I VE fe
HHELRIT B, JEY RRYVEBLTIEZL,

itive

data race
unsafe

Data races should be exceptions.

[Elmas et al., PLDI 2007; Marino et al., PLDI 2010;
Lucia et al., ISCA 2010; Adve and Boehm, CACM Aug. 2010; ...]

data race exceptions

thread 1 thread 2
int VlV = votes;

votes = vl + 1;

(\% ‘

int v2 =”otes;

implementing exceptions

null pointer e (@ == mmihy o |
deference throw new NullPointerException();
}
c.addVote();
array index out f (i <0 || array.length <= i) {
£l d throw new
of bounas ArrayIndexOutOfBoundsException(1i);
}
array[1i] = 13;
data race GezziiEe

Software data race exceptions are slow.

Recipe:
e Access history of every memory location
e Check/update on every memory access.

e Sync history of every lock
e Update on every lock operation.

25
x 20

in

c 15

slowdow
—
o

! native

Vector Clocks FastTrack

o O

24

Radish: faster + accurate

Radish slowdown vs. native execution

N

w

—

Radish slowdown in X
N

liii!==”"‘t“

blackscholes fluid streamcluster swaptions vips x264 (mean)

o

PARSEC benchmarks (C)

[ISCA 2012] 5

software reliability toolbox

[software engineering tools]

Knowledge of program
programming languages
& program analysis
data race

exceptions . .
compilers| run-time systems

cfficient checking computer architecture

mechanisms

[hardware implementation }
[ASPLOS 2014]

Translation affects data races.

[‘ Java A i}]

reuse

move objects to new

add accesses

translation

add synchronization

schedule language threads on hardware threads

N
[‘ hardware A i}]

[ASPLOS 2014] 27

Fast (HW) + Accurate (SW)

Java data-race exceptions

JVM + LARD events

modified JVM)

x86 + LARD interface extended ISA)
Radish + LARD support

extended HW)

[ISCA 2012, ASPLOS 2014]

€1 skills for Thinking

and Programming

Few of you will build new HW, OS, compiler, but...

1. Effective programmers understand their tools and systems.

2. The skills and ideas you learn here apply everywhere.

Reason about computational models, translation.
Debug for correctness and performance (with tools to help).
Assess costs and limits of representations.

"Figure it out” via documentation, experiments, critical thinking.

oFoundations

CS 301: Compilers CS 349:

and Runtime Systems Distributed Computing

CS 3?2:
CS 342 Operating Systems

Computer Security
CS 249: Scientific and
CS 242: /,’ Parallel Computing

Computer Networks CS 3?7:
: Computer Architecture

CS 251: ce 240: R

. . Databases with
Computer Systems/Organization Web Interfaces

Programming
Languages

