
Memory	Hierarchy:	Cache

Memory	hierarchy
Cache	basics
Locality
Cache	organization
Cache-aware	 programming

How	does	execution	 time	grow	with	SIZE?
int[] array = new int[SIZE];
fillArrayRandomly(array);
int s = 0;

for (int i = 0; i < 200000; i++) {
for (int j = 0; j < SIZE; j++) {
s += array[j];

}
}

3SIZE

TIME

reality beyond	O(...)

4

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

SIZE

Ti
m
e

Processor-Memory	Bottleneck

5

Main	
Memory

CPU Reg

Processor	performance
doubled	about	
every	18	months Bus	bandwidth

evolved	much	slower

Bandwidth:	256	bytes/cycle
Latency:	1-few	cycles

Bandwidth:	2	Bytes/cycle
Latency:	100	cycles

Solution:	caches

Cache

Example

Cache
English:
n.	a	hidden	storage	space	for	provisions,	weapons,	or	treasures
v.	to	store	away	in	hiding	for	future	use

Computer	Science:
n.	a	computer	memory	with	short	access	time	used	to	store	
frequently	or	recently	used	instructions	or	data
v. to	store	[data/instructions]	temporarily	for	later	quick	retrieval

Also	used	more	broadly	in	CS:	software	caches,	file	caches,	etc.

6

General	Cache	Mechanics

7

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory Larger,	 slower,	 cheaper.
Partitioned	 into	blocks (lines).

Data	is	moved	
in	block	units

Smaller,	 faster,	more	expensive.
Stores	subset	of	memory	blocks.

(lines)

CPU Block: unit	of	data
in	cache	and	memory.
(a.k.a.	line)

Cache	Hit

8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

1.	Request	data	in	block b.Request:	14

14
2.	Cache	hit:

Block	b	is	in	cache.

CPU

9

Cache	Miss

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

1.	Request data	in	block	b.Request:	12

2.	Cache miss:
block	is	not in	cache

4.	Cache	fill:
Fetch	block	from	memory,
store	in	cache.

Request:	12

12

12

9

9

12

3.	Cache	eviction:
Evict	a	block	to	make	room,
maybe	store	to	memory.

Placement	Policy:
where	 to	put	block	in	cache

Replacement	Policy:
which	block	to	evict

CPU

Locality:	why	caches	work

Programs	tend	to	use	data	and	instructions	at	addresses	near	or	
equal	to	those	they	have	used	recently.

Temporal	locality:		
Recently	 referenced	 items	are	likely
to	be	referenced	 again	in	the	near	 future.

Spatial	locality:		
Items	with	nearby	addresses	 are	likely
to	be	referenced	 close	together	 in	time.

How	do	caches	exploit	temporal	and	spatial	locality?

10

block

block

Locality	#1

Data:
Temporal:	sum referenced	 in	each	iteration
Spatial:	array	a[] accessed	 in	stride-1 pattern

Instructions:
Temporal:	execute	 loop	repeatedly
Spatial:	execute	 instructions	 in	sequence

Assessing	locality	in	code	is	an	important	programming	skill.

11

sum = 0;
for (i = 0; i < n; i++) {

sum += a[i];
}
return sum;

What	is	stored	in	memory?

Locality	#2

12

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

1:	a[0][0]
2:	a[0][1]
3:	a[0][2]
4:	a[0][3]
5:	a[1][0]
6:	a[1][1]
7:	a[1][2]
8:	a[1][3]
9:	a[2][0]
10:	a[2][1]
11:	a[2][2]
12:	a[2][3]

stride	1

int sum_array_rows(int a[M][N]) {
int sum = 0;

for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {

sum += a[i][j];
}

}
return sum;

}

row-major	M	x	N	2D	array	in	C

Locality	#3

13

int sum_array_cols(int a[M][N]) {
int sum = 0;

for (int j = 0; j < N; j++) {
for (int i = 0; i < M; i++) {

sum += a[i][j];
}

}
return sum;

}

1:	a[0][0]
2:	a[1][0]
3:	a[2][0]
4:	a[0][1]
5:	a[1][1]
6:	a[2][1]
7:	a[0][2]
8:	a[1][2]
9:	a[2][2]
10:	a[0][3]
11:	a[1][3]
12:	a[2][3]

stride	N

row-major	M	x	N	2D	array	in	C

…

…
a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

Locality	#4

What	is	"wrong"	with	this	code?
How	can	it	be	fixed?

14

int sum_array_3d(int a[M][N][N]) {
int sum = 0;

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

for (int k = 0; k < M; k++) {
sum += a[k][i][j];

}
}

}
return sum;

}

Cost	of	Cache	Misses
Huge	difference	between	a	hit	and	a	miss

Could	be	100x,	if	just	L1	and	main	memory

99%	hits	could	be	twice	as	good	as	97%.		How?
Assume	cache	hit	time	of	1	cycle,	miss	penalty	of	100	cycles

Mean	access	 time:
97%	hits:		1	cycle	+	0.03	*	100	cycles	=	4	cycles
99%	hits:		1	cycle	+	0.01	*	100	cycles	=	2	cycles

15

hit/miss	 rates

Cache	Performance	Metrics

Miss	Rate
Fraction	of	memory	accesses	 to	data	not	in	cache	 (misses	 /	accesses)
Typically: 3%	- 10%	for	L1;	maybe	<	1% for	L2,	depending	 on	size,	etc.

Hit	Time
Time	to	find	and	deliver	a	block	in	the	cache	to	the	processor.
Typically:	1	- 2	clock	cycles	for	L1;	5	- 20	clock	cycles	for	L2

Miss	Penalty
Additional	 time	required	 on	cache	miss	=	main	memory	access	 time
Typically	50	- 200	cycles	for	L2 (trend:	increasing!)

16

Memory

memory	hierarchy
why	does	it	work?

persistent	storage
(hard	disk, flash,	over	network,	cloud,	etc.)

main	memory
(DRAM)

L3	cache
(SRAM,	off-chip)

L1	cache
(SRAM,	on-chip)

L2	cache
(SRAM,	on-chip)

registers
small,	fast,	
power-hungry,	
expensive

large,	slow,	
power-efficient,	
cheap

program	sees	“memory”;
hardware	manages	caching

transparently

explicitly	
program-
controlled

Cache Organization:	Key	Points
Block
Fixed-size	unit	of	data in	memory/cache

Placement	Policy
Where	should	a	given	block	be	stored	in	the	cache?

§ direct-mapped,	 set	associative

Replacement	Policy
What	if	there	is	no	room	in	the	cache	for	requested	data?

§ least	recently	used,	most	recently	used

Write	Policy
When	should	writes	update	lower	levels	of	memory	hierarchy?

§ write	back,	write	through,	write	allocate,	no	write	allocate

Blocks 00000000

00001000

00010000

00011000

Memory
(byte)
address

00010010

Divide	memory	 into	fixed-size	aligned	blocks.
power	of	2

full	byte	address

Block	ID
address	bits	- offset	bits

offset	within	block
log2(block	size)

Example:	block	size	=	8

block	

0

block	

1

block	

2

block	

3

00010001
00010010
00010011
00010100
00010101
00010110
00010111

remember	withinSameBlock?	(Pointers	Lab) ...

N
ote:	draw

ing	address	order	differently	from
	here	on!

Placement	Policy

00
01
10
11

Index
Cache

S	=	#	slots	=	4

Small,	fixed	number	of	block	slots.

Large,	fixed	number	of	block	slots.

Memory Mapping:
index(Block	ID)	=	???Block	ID

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Placement:	Direct-Mapped

21

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Mapping:
index(Block	ID)	=	Block	ID	mod SBlock	ID

Cache

S	=	#	slots	=	4

(easy	for	power-of-2	block	sizes...)

Placement:	mapping	ambiguity

22

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Which	block	is	in	slot	2?

Block	ID

Cache

S	=	#	slots	=	4

Mapping:
index(Block	ID)	=	Block	ID	mod S

Placement:	Tags	resolve	ambiguity

23

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Block	ID	bits	not	used	for	index.

Block	ID

Tag Data
00
11
01
01

Cache

S

Mapping:
index(Block	ID)	=	Block	ID	mod S

Address	=	Tag,	Index,	Offset

00010010 full	byte	address

Block	ID
Address	bits	 - Offset	bits

Offset	within	block
log2(block	size)	=	b

#	address	bits

Block	ID	bits	 - Index	bits
Tag

log2(# cache	slots)
Index

a-bit	Address
s	bits(a-s-b)	 bits b	bits

OffsetTag Index

Where	within	a	block?

What	slot	 in	the	cache?
Disambiguates	 slot	contents.

Placement:	Direct-Mapped

25

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

(still	easy	for	power-of-2	block	sizes...)

Block	ID

Cache

Why	not	this	mapping?
index(Block	ID)	=	Block	ID	/ S

A	puzzle.

Cache	starts	empty.
Access	(address,	hit/miss)	stream:

(10,	miss),	(11,	hit),	(12,	miss)

What	could	the	block	size	be?

26

block	size	>=	2	bytes block	size	<	8	bytes

Placement:	direct	mapping	conflicts

What	happens	when	accessing
in	repeated	pattern:
0010,	0110,	0010,	0110,	0010...?

27

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Block	ID

cache	conflict
Every	access	 suffers	 a	miss,	
evicts	cache	line	needed	
by	next	access.

Placement:	Set	Associative

28

0

1

2

3

Set

2-way
4	sets,

2	blocks	each

0

1

Set

4-way
2	sets,

4	blocks	each

0
1
2
3
4
5
6
7

Set

1-way
8	sets,

1	block	each

direct	mapped

0

Set

8-way
1	set,

8	blocks

fully	associative

Mapping:
index(Block	ID)	=	Block	ID	mod S

S	=	#	slots	in	cache
sets

Index	per	set of	block	slots.
Store	block	in	any slot	within	set.

Replacement	policy:	if	set	 is	full,	what	block	should	be	replaced?
Common: least	recently	used	(LRU)
but	hardware	usually	 implements	 “not	most	recently	used”

Example:	Tag,	Index,	Offset?

index(1101)	=	____

4-bit	Address OffsetTag Index

tag	bits ____
set	index	bits ____
block	offset	bits____

Direct-mapped
4	slots
2-byte	blocks

Example:	Tag,	Index,	Offset?

16-bit	Address OffsetTag Index
E-way	set-associative
S slots
16-byte	blocks

0
1
2
3
4
5
6
7

Set

0

1

2

3

Set

0

1

Set

E	=	1-way
S	=	8	sets

E	=	2-way
S	=	4	sets

E	=	4-way
S	=	2	sets

tag	bits ____
set	index	bits ____
block	offset	bits ____
index(0x1833) ____

tag	bits ____
set	index	bits ____
block	offset	bits ____
index(0x1833) ____

tag	bits ____
set	index	bits ____
block	offset	bits ____
index(0x1833) ____

Replacement	Policy
If	set	is	full,	what	block	should	be	replaced?

Common: least	recently	used	(LRU)
(but	hardware	usually	 implements	 “not	most	recently	 used”

Another	puzzle:		Cache	starts	empty,	uses	LRU.
Access	(address,	hit/miss)	stream

(10,	miss);	(12,	miss);	(10,	miss)

31

12	is	not	in	the	same	block	as	10 12’s	block	replaced	10’s	block

direct-mapped	 cacheassociativity of	cache?

General	Cache	Organization	 (S,	E,	B)

32

E	lines	per	set		(“E-way”)

S	sets

set

block/line

0 1 2 B-1tagv

valid	bit B =	2b bytes	of	data	per	cache	line	(the	data	block)

cache	capacity:
S	x	E	x	B		data	bytes
address	size:
t	+	s	+	b		address	bits

Powers	of	2

Cache	Read

33

E	=	2e lines	 per	set

S	=	2s sets

0 1 2 B-1tag1

valid	bit
B	=	2b bytes	of	data	per	cache	line	(the	data	block)

t	bits s	bits b	bits
Address	of	byte	in	memory:

tag set
index

block
offset

data	begins	at	this	offset

Locate	set	by	index
Hit	if	any	block	 in	set:

is valid;	and
has matching	 tag

Get	data	at	offset	in	block

Cache	Read:	Direct-Mapped (E	=	1)

34

S	=	2s sets

t	bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find	set

This	cache:
• Block	size:	8	bytes
• Associativity:	 1	block	per	set	(direct	mapped)

Cache	Read:	Direct-Mapped (E	=	1)

35

t	bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

match?:	yes	=	hitvalid?			+

block	offset

tag 7654

int (4	Bytes)	 is	here

If	no	match:	old	 line	 is	evicted	and	replaced

This	cache:
• Block	size:	8	bytes
• Associativity:	 1	block	per	set	(direct	mapped)

Direct-Mapped	Cache	Practice

12-bit	address
16	lines,	4-byte	block	size
Direct	mapped

36

11 10 9 8 7 6 5 4 3 2 1 0

03DFC2111167
––––0316
1DF0723610D5

098F6D431324
––––0363
0804020011B2
––––0151
112311991190
B3B2B1B0ValidTagIndex

––––014F
D31B7783113E
15349604116D

––––012C
––––00BB
3BDA159312DA
––––02D9
8951003A1248
B3B2B1B0ValidTagIndex

0x354

0xA20

Offset	bits?	 	Index	bits?	Tag	bits?

Example (E	=	1)

37

int sum_array_rows(double a[16][16]){
double sum = 0;

for (int r = 0; r < 16; r++){
for (int c = 0; c < 16; c++){

sum += a[r][c];
}

}
return sum;

}

32	bytes	=	4	doubles

Assume:	 cold	(empty)	cache
3-bit	set	index,	5-bit	offset

aa...arrr rcc cc000

int sum_array_cols(double a[16][16]){
double sum = 0;

for (int c = 0; c < 16; c++){
for (int r = 0; r < 16; r++){

sum += a[r][c];
}

}
return sum;

}

Locals	in	registers.
Assume a is aligned such that
&a[r][c] is aa...a rrrr cccc 000

0,0 0,1 0,2 0,3

0,4 0,5 0,6 0,7

0,8 0,9 0,a 0,b

0,c 0,d 0,e 0,f

1,0 1,1 1,2 1,3

1,4 1,5 1,6 1,7

1,8 1,9 1,a 1,b

1,c 1,d 1,e 1,f

32	bytes	=	4	doubles

4	misses	per	row	of	array
4*16	=	64	misses

every	access	a	miss
16*16	=	256	misses

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

0,0:	aa...a000 000 000000,4:	aa...a000 001 000001,0:	aa...a000 100 000002,0:	aa...a001 000 00000

Example (E	=	1)

38

int dotprod(int x[8], int y[8]) {
int sum = 0;

for (int i = 0; i < 8; i++) {
sum += x[i]*y[i];

}
return sum;

}

x[0] x[1] x[2] x[3]y[0] y[1] y[2] y[3]x[0] x[1] x[2] x[3]y[0] y[1] y[2] y[3]x[0] x[1] x[2] x[3]

if	x	and	y	are	mutually	aligned,	
e.g.,	0x00,	0x80

if	x	and	y	are	mutually	unaligned,	
e.g.,	0x00,	0xA0

x[0] x[1] x[2] x[3]

y[0] y[1] y[2] y[3]

x[4] x[5] x[6] x[7]

y[4] y[5] y[6] y[7]

block	=	16	bytes;	8	sets	 in	cache
How	many	block	offset	bits?
How	many	set	index	bits?

Address	bits:	ttt....t	sss	bbbb
B	=	16	=	2b: b=4	offset	bits
S	=			8	=	2s: s=3	index	bits

Addresses	 as	bits
0x00000000: 000....0	000	0000
0x00000080: 000....1	000	0000
0x000000A0: 000....1	010	000016	bytes	=	4	ints

Cache	Read:	Set-Associative (Example:	E	=	2)

39

t	bits 0…01 100
Address	of	int:

find	set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

This	cache:
• Block	size:	8	bytes
• Associativity:	 2	blocks	per	set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Cache	Read:	Set-Associative (Example:	E	=	2)

40

This	cache:
• Block	size:	8	bytes
• Associativity:	 2	blocks	per	set

t	bits 0…01 100
Address	of	int:

compare	both

valid?		+	 match:	yes	=	hit

block	offset

tag 7654

int (4	Bytes)	 is	here

If	no	match:	Evict	and	replace	one	 line	 in	set.

Example (E	=	2)

42

float dotprod(float x[8], float y[8]) {
float sum = 0;

for (int i = 0; i < 8; i++) {
sum += x[i]*y[i];

}
return sum;

}

x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3]
If	x	and	y	aligned,
e.g.	&x[0]	=	0,	&y[0]	=	128,
can	still	fit	both	because	each	set	
has	space	for	two	blocks/lines

x[4] x[5] x[6] x[7] y[4] y[5] y[6] y[7]
4	sets

2	blocks/lines	 per	set

Types	of	Cache	Misses

Cold	(compulsory)	miss

Conflict	miss

Capacity	miss

Which	ones	can	we	mitigate/eliminate?	How?

43

Writing	to	cache
Multiple	copies	of	data	exist,	must	be	kept	in	sync.

Write-hit	policy
Write-through:
Write-back:	needs	a	dirty	bit

Write-miss	policy
Write-allocate:
No-write-allocate:

Typical	caches:
Write-back	+	Write-allocate,	 usually
Write-through	 +	No-write-allocate,	 occasionally

44

Write-back,	write-allocate	example

45

0xCAFECache

Memory

U

0xFACE

0xCAFE

0

T

U

dirty	bittag

1. mov $T,	%ecx
2. mov $U,	%edx
3. mov $0xFEED,	(%ecx)

a. Miss	on	T.

eax = 0xCAFE
ecx =	T
edx =	U

Cache/memory	not	involved

Write-back,	write-allocate	example

46

Cache

Memory 0xFACE

0xCAFE

T

U

dirty	bit

1. mov $T,	%ecx
2. mov $U,	%edx
3. mov $0xFEED,	(%ecx)

a. Miss	on	T.
b. Evict	U	(clean:	discard).
c. Fill	T	(write-allocate).
d. Write	T	in	cache	(dirty).

4. mov (%edx),	%eax
a. Miss	on	U.tag

T 00xFACE0xFEED 1

eax = 0xCAFE
ecx =	T
edx =	U

Write-back,	write-allocate	example

47

0xCAFECache

Memory

U

0xFACE

0xCAFE

0

T

U

dirty	bittag

eax = 0xCAFE
ecx =	T
edx =	U

1. mov $T,	%ecx
2. mov $U,	%edx
3. mov $0xFEED,	(%ecx)

a. Miss	on	T.
b. Evict	U	(clean:	discard).
c. Fill	T	(write-allocate).
d. Write	T	in	cache	(dirty).

4. mov (%edx),	%eax
a. Miss	on	U.
b. Evict	T	(dirty:	write	back).
c. Fill	U.
d. Set	%eax.

5. DONE.0xFEED

0xCAFE

Example	Memory	Hierarchy

48

Regs

L1	
d-cache

L1	
i-cache

L2	unified	 cache

Core	0

Regs

L1	
d-cache

L1	
i-cache

L2	unified	 cache

Core	3

…

L3	unified	 cache
(shared	by	all	cores)

Main	memory

Processor	package

L1	i-cache	and	d-cache:
32	KB,		8-way,	
Access:	 4	cycles

L2	unified	 cache:
256	KB,	8-way,	
Access:	 11	cycles

L3	unified	 cache:
8	MB,	16-way,
Access:	 30-40	cycles

Block	size:	64	bytes	for	
all	caches.

slower,	but
more	likely
to	hit

Typical	laptop/desktop	processor
(always	changing)

Aside:	software	caches
Examples

File	system	buffer	caches,	web	browser	 caches,	database	caches,	network	
CDN	caches,	etc.

Some	design	differences
Almost	always	fully-associative

Often	use	complex	replacement	 policies

Not	necessarily	 constrained	 to	single	“block”	transfers

49

Cache-Friendly	Code
Locality,	locality,	locality.
Programmer	can	optimize	for	cache	performance

Data	structure	 layout
Data	access	patterns

Nested	 loops
Blocking	(see	CSAPP	6.5)

All	systems	favor	“cache-friendly	code”
Performance	 is	hardware-specific
Generic	 rules	capture	most	advantages

Keep	working	set	small	(temporal	 locality)
Use	small	strides	 (spatial	 locality)
Focus	on	inner	loop	code

50

