Program, Application

Programming Language

Compiler/Interpreter

Operating System

Software

Instruction Set Architecture

Microarchitecture

Digital Logic

Hardware

Devices (transistors, etc.)

Solid-State Physics

A (brief) 240 tour of Operating Systems

Focus: key abstractions provided by kernel
barely scraping surface of kernel - take a full OS course
"0S" often used to refer to much more than the kernel

Abstractions:
process
virtual memory
virtual devices, 1/0

Virtualization mechanisms and hardware support:
context-switching
exceptional control flow
address translation, paging, TLBs

Operating Systems

Problem: unwieldy hardware resources
complex and varied
storage, networks, displays, user interfaces...
many different implementations
limited one/few processors, fixed-size memory

Solution: operating system

Manage, abstract, and virtualize hardware resources
Simpler, common interface to varied hardware
Share limited resources among multiple processes, users
Protect co-resident processes and users from each other

Processes

Program = code (static)

Process = a running program instance (dynamic)
code +state (all registers, memory, other resources)

Key illusions:

Logical control flow
Each process seems to have exclusive use of the CPU

Private address space
Each process seems to have exclusive use of full memory

Why are these abstractions important?

How are these abstractions implemented?

11/12/15

Implementing logical control flow

Abstraction: every process has full control over the CPU

Process A Process B Process C

| B

Implementation: time-sharing

Process A Process B Process C

time I : :

Context Switching

Kernel (shared OS code) switches between processes
Kernel code runs as part of every process (NOT its own separate process)
Controls scheduling: which process to run next, and when.

Control flow passes between processes via context switch.
(how?) context = state = all registers (including PC) + memory

Process A Process B

user code

kernel code } context switch

Control Flow

Processor: read instruction, execute it, go tonext instruction, repeat

Physical control flow Explicit changes:
Jumps (conditional, unconditional)
<startup>
X Call, return
inst;
o inst ;
£ 2 Exceptional changes:
+ insts user input
data arrives from disk or network
instn unexpected errors
<shutdown> transfer control between processes/OS

time user code
kernel code } context switch
user code
Exceptions

Synchronous: caused by instruction
Traps: like procedure call to OS

Intentional: transfer control toOS to perform some function
system calls (syscall), breakpoints, ...
Returns control to “next” instruction

page faults, segment protection faults, divide by zero
Fix and re-execute faulting instruction or abort process.

Aborts: unintentional, unrecoverable

hardware failure detected

Asynchronous (Interrupts): caused by external events
incoming 1/0 activity, reset button, timers

11/12/15

11/12/15

Exceptions: hardware support for OS Interrupt Vector

stored in memory
special register holds base address

transfer control to OS in response to event
What code should the OS run to handle the event?

code for Unique ID per type of event
exception handler 0

Exception . i i

Table code for ID = index into exception table

User Process (01 0 rora EXceptonliandieigt (a.k.a. interrupt vector)
l exception ; 1:', L—""] code for
r X
event ———— 5 P gxceptionliandicig Handler i is called each time

exception processing

n-1 . .
'\l by exception handler] q‘ exception i occurs
return or abort

code for
exception handler n-1

Exception
numbers a jump table for exceptions...
9 10
Open a file (trap/system call) Segmentation Fault
User process calls: open (filename, options) int a[1000]; X . X X
open executes system call instruction int void bad () | Writeto invalid memory location.
a[5000] = 13;
0804d070 <__libc_open>: }
804d082: cd 80 int $0x80 [80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360 |
804d084: 5b pop $ebx
User Process (01
User Process os l -
movl exception: page fault
intl exception detect invalid address

pop ———— > signal process
'\l open file
returns

aborts process with SIGSEGV signal

11/12/15

Page Fault int a[1000];

main () {

. : . a[500] = 13;
Write to valid memory location }

... but contents currently on disk instead
(more later: virtual memory)

I 80483b7: ¢7 05 10 9d 04 08 0d movl $0xd, 0x8049d10

User Process (01

movl l exception: page fault

l Load page into
reexecute memory

same instruction

14

