Integer Representation

Representation of integers: unsigned and signed
Modular arithmetic and overflow

Sign extension
Shifting and arithmetic

Multiplication
Casting

Fixed-width integer encodings

Unsigned C N non-negative integers only

Signed C Z both negative and non-negative integers

n bits offer only 2" distinct values.

Terminology:

“Most-significant” bit(s) “Least-significant” bit(s)
or “high-order” bit(s) \ /or “low-order” bit(s)
MSB 0110010110101001 LSB

Unsighed integer representation

Example in 4-bit unsigned representation.

1 O 1 1 =1x23+0x22+1x21+1x20

3 4 2 1 < '
¢ - " " — weight
3 p) 1 04’/ pOSition

n-bit unsigned numbers:

minimum =

maximum =

Unsigned modular arithmetic, overflow

Examples in 4-bit unsigned representation.

15

1111
1110
1101

1100

0000
0001
0010

0011

11+2= 13+5=

1010
1001
1000

0101
0110

0111

x + vy in N-bit unsigned arithmetic is (x + y) mod 2" in math

unsigned overflow = "wrong" answer = wrap-around
= carry 1 out of MSB = math answer too big to fit

Unsigned overflow
Addition overflows if and only if a carry bit is dropped.

15 1111 T
+ 2 + 0010 1111 0000

T < 13 / 1110 0001
1101 0010

1100 0011

1010
1001
1000

0101
0110

0111

Modular Arithmetic

Sign-Magnitude representation?

Most-significant bit (MSB) is sign bit

0 means non-negative

1 means negative

Remaining bits are an unsigned magnitude

8-bit sign-and-magnitude:
0x00 = 00000000 represents

Ox7F =01111111 represents
Ox85 = 10000101 represents

Ox80 = 10000000 represents

Max and min for n bits?

Anything weird here?

Sign-Magnitude Negatives

Cumbersome arithmetic.

Example:
4-31=4+(-3)

!

0100
+1011

What about zero?

Sign-magnitude is not such a good idea...

Two’s complement representation
for signed integers

n-bit representation

3("'1)... ; ;‘ 2_2 2_1 E)‘\weight
n-1 ... 1 .. 3 2 1 Q (< position

Positional representation, but
most significant position has negative weight.

8-bit representations

00001001 10000001

11111111 00100111

n-bit two's complement numbers:

minimum = maximum =

4-bit unsigned vs. 4-bit two’s complement

1 011

1x23+40x22+1x2+1x2° 1x-2240x22+1x2'+1x2°

11 « - difference =

Two’s complement addition Just Works

2 0010 -2 1110
+3 +0011 +-3 +1101

1110 0001 \ 4 7
1101 0010
1100

-2 1110
+3 +0011 +-

W N
+
—
=
o
=
|
0))]
S
=
S
+
U

Modular Arithmetic

Two’s complement overflow

Addition overflows
if and only if the arguments have the same sign but the result does not.

if and only if the carry in and out of the sign bit differ.

-1 1111 1111 0000
_3 / 1110 0001 \ 4 2
+2 + 0010 101 0010
=4 [1100 0011 |* 3
_s\1011 .
1010
-6 1001 +5
6 0110 1000 0111
+ 3 + 0011 N-8 47

Modular Arithmetic

Some CPUs/languages raise exceptions on overflow.
C and Java cruise along silently... Oops?

Reliability

Ariane 5 Rocket, 1996 =

Exploded due to cast of -
64-bit floating-point number |
to 16-bit signed number.
Overflow.

"...aModel 787 airplane ... can lose all

BOEing 787, 2015 alternating current (AC) electrical power ...

caused by a software counter internal to the
GCUs that will overflow after 248 days of
continuous power. We are issuing this AD to
prevent loss of all AC electrical power, which
could result in loss of control of the airplane.”
--FAA, April 2015

A few reasons two’s complement is awesome

Same exact addition algorithm as for unsigned numbers.

Easy: X + -x == .
o . Simple
Subtraction is just addition: 4 - 3 == 4 + (-3)
hardware!

MSB is sign: negatives start with 1, non-negatives start with 0

Negativeoneis 111..11.
Complement rules:
X + ~x == -1

~Xx + 1 == -x

Another derivation

How should we represent 8-bit negatives?

* For all positive integers x,
the representations of x and =x must sum to zero.

* Use the standard addition algorithm.

00000001 00000010 00000011
+ + +
00000000 00000000 00000000

* Find a rule to represent —x where that works...

Convert small two's complement representation
to a larger representation?

00000010 8-bit 2

0000000000000010 16-hit 2

How should
these bits
be filled?

277272772 72?211111100 16-bit -4

11111100 8-bit -4

Sign extension
Fill new bits with copies of the sign bit.

00000010 8-bit 2

0000000000000010 16-bit 2

11111100 8-bit -4

1111111111111100 16-bit -4

Casting from smaller to larger signed type does sign extension.

How are shifting and arithmetic related?

unsigned

X =27; 00011011

y=X<<2; MM logical shift left:

y == 108 01101100 shiftinzerosfrom right

unsigned

11101101 x = 237;

logical shift right: \\\\\\\\ y=x>>2;

shift in zeros from left 00111011 y == 59

19

How are shifting and arithmetic related?

e 10011011
y=x<<2; MM logical shift left:
y == 108 O 1 1 O 1 1 O O shift in zeros from the right
sighed
11101101 X =-19;

rrerr N AN

shift in copies of MSB from left 1 1 1 1 1 O 1 1 y==-5

20

Multiplication

Compute answer in 2x bits. Most languages drop high order half.

2 0010 »)
ﬁ x 0011 B 11101111 oooo0001 y
6 00000100 1101 0010
% [1100 0011 |+ 3
_c\1011 .
-2 1110 -6 1011?)01 +5
X2 x 0010 1000 0111
-4 11111100 - "7

Modular Arithmetic

Multiplication

Compute answer in 2x bits. Most languages drop high order half.

5 0101 _1 0
X 4 % 0100 11101111 oooo0001
200 00010100
A

1101 0010

=4 (1100 0011 \' 3
_c|1011 L 4
-3 1101\ /.
ﬂ X 0111 1000 0111
21 11101011 - "

Modular Arithmetic

Multiplication

Compute answer in 2x bits. Most languages drop high order half.

5 0101 _1 0

ﬁ x 0101 B 11101111 oooo0001 .
25 00011001 1101 0010

_7 =% 1100 0011 \' 3

_ o\ 1011 »

-2 1110 —6 1011?)01 +5
X 6 x 0110 1000 0111
-1 11110100 B "

A

Modular Arithmetic

Multiplication by shift-and-add

Available operations
x << k implements x * 2k

X +y

Implement y = x * 24 usingonly <<, +, and integer literals

What does this function compute?

unsigned puzzle (unsigned x, unsigned V)
unsigned result = 0;
for (unsigned 1 = 0; 1 < 32; 1++) {
if (v & (1 << 1)) {

result = result + (x << 1);

}

return result;

{

25

Casting Integers in C i1

Number literals: 37 issigned, 37U is unsigned

Integer Casting:

Explicit casting:

int tx = (int) 73U; // still 73
unsigned uy = (unsigned) -4; // big positive #
Implicit casting: Actually does
tx = ux; // tx = (int)ux;
uy = ty; // uy = (unsigned) ty;
void foo(int z) { ... }
foo (ux) ; // foo((int)ux);

if (tx < ux) ... // if ((unsigned)tx < ux)

26

More Implicit Casting in C

If you mix unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned.

bits interpreted?

How are the argument J

Includes comparisons (<, >, ==, <=, >=)

Argument;, Op Argument, Type

0 == 0U unsigned
-1 < 0 signed
-1 < 0U unsigned
2147483647 < -21477483648

21474836470 < -2147483648

-1 < -2

(unsigned) -1 < -2

2147483647 < 21474836480

21477483647 < (int)2147483648U

Note:

T . =-2,147,483,648

T .. =2,147,483,647

Result

1
1
0

27

