Program, Application

Programming Language

c SWe't;ZO Compiler/Interpreter
* Operating System
Intro to

Computer [Instruction Set Architecture

Microarchitecture

Systems

Digital Logic

Devices (transistors, etc.)

Solid-State Physics

Today

@What is CS 240?

Why take CS 2407?

(2)
@ How does CS 240 work?
(@)

Dive into foundations of computer hardware.

CS 111, 230, 231, 235, 251:
* What can aprogram do?
* How can aprogram solveaproblem?
* Howdoyou structureaprogram?
* Howdoyouknow itiscorrect or efficient?
* How hardisittosolveaproblem?
* How iscomputation expressed?
* What doesa program mean?

A BIG question is missing...

@ CS 240: How do computers work?

00 /Users/bpw;/courses/cs240/cs240f14 /HelloWorld.java.

| T3 vew | =3 open | 18 save [T3 close | [3 cut | T copy | @ Paste | & undo | @ Redo | [# Find | | compile | Reset | | Run | Test | javadoc

[T BT public class HelloWorld {

public static void main(String args[1) {
System.out.println("Hello, world!";

¥

1
Inreractions Console Compiler Output

Welcome to Drlava. Working directory is /Users/bpw/courses/cs240/cs240f14
> run Hellolorld
Hello, world!

od of Current Document 6:0

circuitboard image: CC-BY- NG SA ifixit.co mf

1/26/16

(Cs 111, 230, Algorithm, Data Structure, Application
g 231, 235, 25 Programming Language
E, Compiler/Interpreter
(9) Operating System

1/26/16

CS 240 Instruction Set Architecture

Microarchitecture

Digital Logic

Devices (transistors, etc.)

Hardware

Solid-State Physics

Algorithm, Data Structure, Application

Big Idea:
Abstraction

Instruction Set Architecture

Layers of Microarchitecture
virtual machines
manage complexity. Digital Logic

Solid-State Physics

Big Idea: Abstraction

with a few recurring subplots

Simple, general interfaces:
— Hide complexity of efficient implementation.
— Make higher-level systems easy to build.
— But they are not perfect.

Os and 1s,
Representation of data and programs

compilers,

. assemblers,
Translation of data and programs decoders
branches,

Control flow within/across programs procedures,

oS

SN

data represented as electrical signals

ENIAC (Electronic Numerical Integrator and Computer),
First Turing-complete all-electronic programmable digital computer

University of Pennsylvania, 1940s
Image: public domain

1930s 1940s 60s 1970s 1980s 1990s 2000s 2010s

program controls general-purpose hardwar

Jean Jennings Bartik and Frances Bilas Spence with part of ENIAC.
The programmers of ENIAC were six women.

http://eniacprogrammers.org/, http://sites.temple.edu/topsecretrosies/

Image: public domain

(@

machine translates instructions to control flow

\ 2 L] Rt
Manchester “Baby” SSEM (Small-Scale Experimental Machine), replica
first stored-program computer — University of Manchester (UK), 1948

IR
NI

Programming 1940s-style with switches and cables.

Image: public domain

TR SSEVT VI T ES Ter MU SEu T CI0SE U P DY ParTor OF DO - UWIT WO TR, LICENT S e TRy CIEatVE COMITO TS ATMD IO ST aT € ATRE 3 0 VIS

Wikimedia Ct - http://c iki ia.org/wiki/File:SSEM_Manchester_musum_close_upjpg

1930s 1940s 1950s 1960s 1970s

http://simh.trailing-edge.com/

hitp://www.paworldcom/artide/24®51/f t aint ke |
dont_fix_it_ancient_omptters_in use_tody-htmiag2 |

1980s 1990s 2000s 2010s

PDP-11 "minicomputers"

1/26/16

1/26/16

1930s 1940s 1950s 1960s 1970s 1980s 2010s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

“Ibmpc5150° by Rutm deRigie- Own work Ligsed under Creai

- hittg/Jemmon s wikimdia o gwiki/Flelbmpc5150.
“IBM PC Mothaboad (1981)" by Gamn - Own work liansal undr Crative Commons AtdbutionshareAlike3.0 viaWkimadia Co| - G Ptothaboad (1981)

Dae fischa - Own work lianse unde C 3.0 = images: CC-BY-NC SA ifixit.con]

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

ENIAC image: public - -
ik Modern Computer Organization
()
Executes Stores program
NIAC) iPhone 5 instructions. code +data
Year 1946 2012 during execution.
Weight 30 tons 4 o0z
Volume 2,400 f6 3.4 i3 L Processor) Memory
Cost(usp, 2014) $6,000,000 $600
Speed few 1000 ops/sec 2,500,000,000 ops/sec
Memory ~100 bytes 1,073,741,824 bytes (1 GB) | Bus |
Power 150,000 W sw | |
Input/Output Switches, lights, later punchcards Touchscreen, audio, camera, wifi, cell, ... Input/ - < USB) Display
Production 1 5,000,000 sold in first 3 days Output Pgtfsiste"t (Netwmk Z)
orage

1930s

1940s 1950s 1960s

Modern Computer Organization

e A
Executes
instructions.
Processor
_ J

1970s

1980s

1990s 2000s 2010s

Processor repeats:

1. fetch instruction
2. fetch data used by instruction
3. execute instruction on data

4. storeresult or choose next instruction

Stores program
code +data
during execution.

Memory

Hardware/Software Interface

Hardware

Physical implementation
of instructions and resources.

Computer

Microarchitecture (| mplementation ofISA)

Instruction
Fetchand
Decode

Registers

Instruction Set Architecture (HW/SW Interface)

processor memory
Instructions
Names, Encodings Instruction Encoded
Effects Logic Instructions
Arguments, Results
Registers Data
Local storage
Names, Size
How many Large storage

Addresses, Locations

Computer

1/26/16

1930s 1940s

1950s 1960s 1970s 1980s 1990s 2000s

Machine Instructions

(adds two values and stores the result)

N\

000000101000101011001000000

Instruction Set Architecture specification

2010s

10000

machine
code | Hardware
program
21
1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

Higher-Level Programming Languages

X =x+Yy;

4

addl %eax,

%ecx - 0000001010001010110010000001

Programming Language specification

0000

Compile time Run time
[||
high-level assembl machine|
language T4Compiler: Y Assembler code |— Hardware
program
program program

1930s 1940s 1950s 1960s 1970s 1980s 1990s

Assembly Language specification

assembly

J—— —>] Assembler

Assemblers and Assembly Languages

addl %eax, %ecx - 00000010100010101100100000010000

2000s

machine
code
program

2010s

Hardware

Early 1950s
Maybe closer to assembler/linker/loader

Later:
B-0 = FLOW-MATIC
- COBOL, late 50s
Jean Sammet also involved

A-0: first compiler, by Grace Hopper

1/26/16

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s

More and more layers...

* Operating systems
* Virtual machines
* Hypervisors

¢ Web browsers

2010s

CS 240: a 3-stage sprint

(4-5 weeks each)

Hardware implementation

From transistors to asimple computer
Hardware-software interface

From instructionset architectureto C
Abstraction for practical systems

Memory hierarchy

Operating systems

Higher-level languages

| just like to program.
Why study the implementation?

It's fascinating, great for critical thinking.
System design principles apply to software too.

Sometimes system abstractions "leak."
Implementation details affect your programs.

int #integer
float #real
int x=..;
x*x > 0 ?
40000 * 40000
50000 * 50000

= 1600000000
= -1794967296

float a=.., b=., c=.;

(-2.7e23 + 2.7e23) + 1.0 =
-2.7e23+ (2.7e23 + 1.0) =

(@a+b) +c = a+ (y +c)?

1.0
0.0

1/26/16

1/26/16

Arithmetic Performance
x /973 x /1024

Reliability

Ariane 5 Rocket, 1996 |

Exploded dueto cast of
64-bit floating-point number
to 16-bit signed number.

Memory Performance

void copyji(int src[2048][2048], ||void copyij(int src [2048][2048],
Overflow. int dst[2048]([2048]) int dst[2048]([2048])
{ {
int i,3; int i,3j;
o "... aModel 787 airplane ...can lose all for (j = 0; j < 2048; j++ or (i = 0; i < 2048; i++
Boe|ng 787, 2015 alternating current I(:":c) electrical power ... fo:gj (i = 0? i< 2048? i-)++>d; foé (3 = 0; j < 2048; j3-+)
caused by a software counter internal to the dst[i][j] = srcli] [j]; dst[i][j] = srcl[i] [j];
GCUs that will overflow after 248 days of } }
continuous power. We are issuing this AD to "
prevent loss of all AC electrical power, which several times faster
could resultin loss of control of the airplane." due to hardware caches
—-FAA, April 2015 3

Security Why take CS 240?

* Learn how computers execute programs.
* Build software tools and appreciate the value of those you use.

t j g * Deepen your appredation of abstraction.
Z ¢ Learn enduring system design principles.
DETECTING GHOST) * Improve your critical thinking skills.
VULNERABILITY ' + Become a better programmer:

— Think rigorously about execution models.

— Program carefully, defensively.

— Debug and reason about programs effectively.

— Identify limits and impacts of abstractions and representations.

— Learn to use software development tools.
* Foundations for:

— Compilers, security, computer architecture, operating systems, ...
* Have fun and feel accomplished!

EheNework Eimes

© 500w Jones
unmatchedinnovation

e GHOST vulnerability is a buffer overflow condition that can be easily exploited loca

otely, which makes it extremely dangerous. This vulnerability is named after the GetHOSTE

A Heart Device Is Found Vulnerable to Hacker Attacks
ction involved in the exploit. ey 1 reoer

Also: C programming language

* Invented to build UNIX operating system, 1970s
— 0OS manages hardware, C close to machine model

* Simple pieces look like Java:
— if, while, for, local variables, assignment, etc.

* Other pieces do not:
— structs vs. objects, functions vs. methods

— addresses, pointers
— no array bounds checks

— weak type system

* Important language, still widely used,
but many better PL ideas have come along since.

https://cs.wellesley.edu/~cs240/

Everything is here.
Please read it.

1/26/16

