
CS	240	Stage	2
Hardware-Software	Interface

Memory	addressing,	 C	language,	pointers
Assertions,	 debugging
Machine	code,	assembly	 language,	program	translation
Control	 flow
Procedures,	 stacks
Data	layout,	security,	 linking	and	loading

Devices	(transistors,	etc.)

Solid-State	Physics

Ha
rd
w
ar
e

Digital	Logic

Microarchitecture

Instruction	Set	Architecture

Operating	System

Programming	Language

Compiler/Interpreter

Program,	Application
So
ft
w
ar
e

Programming	with	Memory
via	C,	pointers,	and	arrays

Computer

Instruction	Set	Architecture	(HW/SW	Interface)
memory

Instruction
Logic

Registers

processor

Encoded
Instructions

Data

Instructions
• Names,	Encodings
• Effects
• Arguments,	Results

Local	storage
• Names,	Size
• How	many Large	storage

• Addresses,	 Locations

byte-addressable	memory	=	mutable	byte	array

Fixed-length	ordered	sequence	of	cells

Cell =	location	=	element
• Addressed	 by	a	unique	numerical	address
• Holds	one	byte
• Can	be	read	and	written	by	program

Address =	index
• Unsigned	number
• Represented	 by	one	word
• Can	be	computed	and	stored

• •
 •

0x00•••0

0xFF•••F

address	space
range	of	possible	addresses

multi-byte	values	in	memory
Use	N contiguous	byte	locations
to	store	an	N-byte	value.

Alignment
Data	of	size	N	bytes	stored	at	A
only	if	Amod	N =	0

N is	a	power	of	2
Recommended	 (x86)	or	required

Why?

Byte	ordering:
Which	byte	is	"first"	in	a	multi-byte	word?

32-bit
Words

Bytes Address

0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00

✔

✘

Endianness: To	store	a	multi-byte	value	in	memory,
which	byte	is	stored	first	(at	a	lower	address)?

Bit	order	within	bytes	is	always	the	same.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

least	 significant	bytemost	 significant	byte
word	in	positional	hexadecimal	notation

2A B6 00 0B

Little	Endian: least	significant	byte	first
• low	order	byte	at	low	address,	 high	order	byte	at	high	address
• used	by	x86

Big	Endian:	most	significant	byte	first
• high	order	byte	at	low	address,	 low	order	byte	at	high	address
• used	by	networks

Address Contents

03 2A

02 B6

01 00

00 0B

Address Contents

03 0B

02 00

01 B6

00 2A

Endianness	 in	x86	Machine	Code

Address Machine Instruction Assembly Instruction
8048366: 81	c3	ab 12	00	00				 add				$0x12ab,%ebx

encodes	 constant	to	add	(0x000012ab)
in	little	 endian	order

encodes:	add	constant
to	register	ebx

assembly	 version	
omits	 leading	 zeros

Data,	Addresses,	and	Pointers
address=	number	of	a	location	in	memory
pointer=	data	that	holds	an	address

The	number	240	is	stored	 at	address	0x20.
24010 =	F016 =	0x00	00	00	F0

A	pointer stored	at	address	 0x08
points	to	the	contents	at	address	0x20.
A	pointer	 to	a	pointer	
is	stored	at	address	0x00.
The	number	12	is	stored	at	address	 0x10.

Is	it	a	pointer?
How	do	we	know	values	are	pointers	 or	not?
How	do	we	manage	use	of	memory?

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

20000000

08000000

F0000000

0C000000

memory	drawn	as	words

C:	variables	are	memory	locations	 (for	now)
Compiler	manages	the	mapping	from	variable	to	memory.
Declarations	do	not	initialize!

int x; // x stored at 0x20
int y; // y stored at 0x0C

x = 0; // store 0 at 0x20

// store 0x3CD02700 at 0x0C

y = 0x3CD02700;

// load the contents at 0x0C,

// add 3, and store sum at 0x20

x = y + 3;

14

x

y

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

Sizes	of	data	types	(in	bytes)
Java	Data	Type C	Data	Type 32-bit	word 64-bit	word

boolean bool 1 1
byte char 1 1
char 2 2
short short	int 2 2
int int 4 4
float float 4 4

long	int 4 8
double double 8 8
long long	long 8 8

long	double 8 16
(reference) (pointer)	* 4 8

C:	Types	determine	sizes

address	size	=	word	size

C:	Addresses	and	Pointers

16

& =	‘address	of’
* =	‘contents	at	address’

or	‘dereference’

int* p;

int x = 5;
int y = 2;

p = &x;

y = 1 + *p;

Declare	a	variable,	p, of	type	int*	that	is	a	
pointer	to (i.e.,	holds	the	address	of) an	int in	memory.
(Does	not	 initialize	 anything.)

Declare	two	variables,	x and	y, that	hold	ints,	
and	set	them	to	hold	5	and	2,	respectively.

Set	the	variable	p to	hold	the	address	of x.
Now,	“p points	to	x.”

Set	y to	hold:
1	plus	the	contents	of	memory	at	the	address	held	by p.		
Because	p points	to	x,	this	is	equivalent	toy=1+x;

“Dereferencep.”

C:	Addresses	and	Pointers
Left-hand-side	=	right-hand-side;

RHS	must	provide	 a	value.
LHS	must	provide	a	storage location.
Store	RHS	value	 in	LHS	location.

int* p; // p stored at 0x04
int x = 5; // x stored at 0x14
int y = 2; // y stored at 0x24

p = &x; // store 0x14 at 0x04
// load the contents at 0x04 (0x14)

// load the contents at 0x14 (0x5)

// add 1 and store sum at 0x24

y = 1 + *p;
// load the contents at 0x04 (0x14)

// store 0xF0 (240) at 0x14

*p = 240;

& =	‘address	of’
* =	‘contents	at	address’

or	‘dereference’

x

y0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

p

What	is	the	type	of	*p?
What	is	the	type	of	&x?
What	is			*(&y) ?

C:	Pointer	Types
Spaces	between	 base	 type,	*,	and	variable	name	mostly	do	not	matter.

The	following	are	equivalent:

int* ptr;
I	see:	 "The	variable	ptr holds	an	address	 of	an	int in	memory."

int * ptr;

int *ptr;
I	see:	 "Dereferencing	 the	variable	ptr will	yield	an	int."
Or "The	memory	location where	 the	variable	ptr points	holds	an	int."

I	prefer	this

more	common	C	style

Caveat:	do	not	declare	multiple	 variables	unless	 using	the	 last	 form.
int* a, b; means	int *a, b; means	int* a; int b;

C:	Arrays
Declaration:	 int a[6]; a is	a	name	 for	the	array’s	address,

not	a	pointer	to	the	array.

Arrays	are	adjacent	locations	in	memory	
storing	the	same	type	of	data	object.

element	type

name
number	of	
elements

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

array	indexing	=	address	arithmetic
Both	are	scaled	by	the	size	of	the	type.

C:	Arrays
Declaration:	

p

Indexing:	

Pointers:	

a[6] = 0xBAD;
a[-1] = 0xBAD;

No	bounds
check:	

int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

int a[6];

The	address	of	a[i] is	address	 of	a[0]
plus	i times	element	 size	in	bytes.

a is	a	name	for	the	array’s	address,
not	a	pointer	to	the	array.

Arrays	are	adjacent	locations	in	memory	
storing	the	same	type	of	data	object.

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

a[0] = 0xf0;
a[5] = a[0];

{equivalent

a[5]

a[0]

…

equivalent {

*p = a[1] + 1;

C:	Array	Allocation
Basic	Principle

T A[N];
Array	of	length	N with	elements	 of	type	T and	name	A
Contiguous block	of	N*sizeof(T) bytes	of	memory

30

char string[12];

x x	+	12

int val[5];

x x	+	4 x	+	8 x	+	12 x	+	16 x	+	20

double a[3];

x	+	24x x	+	8 x	+	16

char* p[3];
(or	char *p[3];)

x x	+	8 x	+	16 x	+	24

x x	+	4 x	+	8 x	+	12

IA32

x86-64

Use	sizeof to	determine	
proper	size	in	C.

C:	Array	Access
Basic	Principle

T A[N];
Array	of	length	N with	elements	 of	type	T and	name	A
Identifier	A can	be	used	as	a	pointer	 to	array	element	0:	A has	type	T*

Reference Type Value
val[4] int
val int *
val+1 int *
&val[2] int *
val[5] int
*(val+1) int
val +	i int *

31

int val[5]; 0 2 4 8 1

x x	+	4 x	+	8 x	+	12 x	+	16 x	+	20

ex

C	strings:	arrays	of	ASCII	characters	ending	with	null character.

Does	Endianness	matter	for	strings?	

int string_length(char str[]) {

}

C:	Null-terminated	 strings

0x48 0x61 0x72 0x72 0x79 0x20 0x50 0x6F 0x74 0x74 0x65 0x72 0x00

'H' 'a' 'r' 'r' 'y' ' ' 'P' 'o' 't' 't' 'e' 'r' '\0'

Why?

ex

C:	* and []
• array	name	==	address	 of	0th element	
• array	indexing	==	pointer	arithmetic

So	C	programmers	often	use	*	where	you	might	expect	[]:
• e.g.:	char*	 is	a:

• pointer	 to	a	char
• pointer	 to	the	first	char	in	a	string	of	unknown	length

int strcmp(char* a, char* b);
int string_length(char* str) {

// Try with pointer arithmetic, but no array indexing.

}

ex

Addr Perm Contents Managed	by Initialized

2N-1 Stack RW Procedure	context Compiler Run-time

Heap RW Dynamic
data structures

Programmer,	
malloc/free,	
new/GC

Run-time

Statics RW Global	variables/	
static	data	structures

Compiler/	
Assembler/Linker Startup

Literals R String		literals Compiler/	
Assembler/Linker Startup

Text X Instructions Compiler/	
Assembler/Linker Startup

0

Memory	Layout

C:	Dynamic	memory	allocation
#include <stdlib.h>

void* malloc(size_t size)
Successful:

Returns	 a	pointer	 to	a	memory	block	of	at	least	size bytes
(typically)	aligned	to	8-byte	boundary
If	size == 0,	returns	 NULL

Unsuccessful:	 returns	NULL	and	sets	errno

void free(void* p)
Returns	 the	block	pointed	at	by	p to	pool	of	available	memory
p must	come	from	a	previous	call	to	malloc

40

void foo(int n, int m) {
// allocate a block of n ints
int* p = (int *)malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc"); // print an error message
exit(0);

}
for (int i=0; i<n; i++) { p[i] = i; }

free(p); // return p to available memory pool
}

41

malloc rules:
cast	result	to	proper	pointer	type
Use	sizeof(...) to	determine	size
free	rules:
Free	only	objects	acquired	from	malloc,	and	only	once.
Do	not	use	an	object	after	freeing	it.

http://xkcd.com/138/

C:	Memory-Related	Perils	and	Pitfalls
Terrible	things	to	do	with	pointers,	part	1.

Dereferencing	bad	pointers

See	later	exercises	for:
Reading	uninitialized	memory
Overwriting	memory
Referencing	 nonexistent variables
Freeing	blocks	multiple	times
Referencing	 freed	 blocks

43

!!!

C:	scanf reads	formatted	input

44

int val;

...

scanf(“%d”, &val);

Read	one	int
from	input.

Store	it	in memory	
at	this	address.

i.e.,	store	it	in	memory	at	the	address
where	the	contents	of	val is	stored:
store	into	memory	at	0xFFFFFF38.

Declared,	but	not	initialized	
– holds	anything.

0xFFFFFF3C
0xFFFFFF38
0xFFFFFF34

CEFAD4BAval

int val;

...

scanf(“%d”, val);

C:	classic	bug	using	scanf

45

!!!

Read	one	int
from	input.

Store	it	in memory	
at	this	address.

i.e.,	store	it	in	memory	at	the	address
given	by	the	contents	of	val:
store	into	memory	at	0xBAD4FACE.

0xFFFFFF3C
0xFFFFFF38
0xFFFFFF34

CEFAD4BAval

Declared,	but	not	initialized	
– holds	anything.

Best	case:	segmentation	 fault,
or	bus	error,	crash.

Bad	case:	silently	 corrupt	data	
stored	at	address	0xBAD4FACE,
and	val still	 holds	0xBAD4FACE.
Worst	case:	arbitrary	corruption

...

0xBAD4FACE

...

3412FECA

C:	memory	error	messages

11:	segmentation	fault
accessing	address	outside	legal	area	of	memory

10:	bus	error
accessing	misaligned	or	other	problematic	address

More	to	come	on	debugging!

http://xkcd.com/371/

C:	Why?
Why	learn	C?

• Think	like	actual	computer:	abstraction	 very	close	to	machine	 level.
• Understand	 just	how	much	Your	Favorite	Language	provides.
• Understand	 just	how	much	Your	Favorite	Language	might	cost.
• Classic.
• Still	(more)	widely	used	(than	it	should	be).
• Pitfalls	still	fuel	devastating	 reliability	and	security	 failures	 today.

Why	not	use	C?
• Probably	not	the	right	language	 for	your	next	personal	 project.
• It	"gets	out	of	the	programmer's	 way"	even	when	the	programmer	 is	

unwittingly	running	toward	a	cliff.
• Many	advances	 in	other	programming	 languages	since	then	fix	a	lot	of	

C's	problems	while	keeping	strengths.

