

Basic building blocks

Common combinational circuits: encoders, decoders, multiplexers

Recall: sum of products

logical sum (OR)
of products (AND)
of inputs or their complements (NOT).

Α	В	С	M
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Construct with:

- 1 code detector per 1-valued output row
- 1 large OR of all code detector outputs

Is it minimal?

Gray Codes = reflected binary codes

Alternate binary encoding designed for electromechanical switches and counting.

How many bits change when incrementing?

Karnaugh Maps: find minimal sums of products

					gray	code		C	D		
A	В	C	D	F(A, B, C,		der ¯	→ 00	01	11	10	
0	0	0	0	0	•	Ψ					
0	0	0	1	0		00	0	0	0	0	
0	0	1	0	0							
0	0	1	1	0		01	0	0	0	1	
0	1	0	0	0	AB						
0	1	0	1	0		11	1	1	0	1	
0	1	1	0	1							
0	1	1	1	0		10	1	1	1	1	
1	0	0	0	1							
1	0	0	1	1 1	. Cover exactly tl	ne 1s b	y drawir	ng maxi	mally si	zed	
1	0	1	0	1	rectangles who	se dim	ensions	(in cells	s) are po	owers o	f
1	0	1	1	1	(They may over	lap or v	wrap ar	ound!)			

- of 2.
- 2. For each rectangle, make a *product* of the inputs (or complements) that are 1 for all cells in the rectangle. (minterms)
- 3. Take the *sum* of these products.

Voting again with Karnaugh Maps

Α	В	С	M
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Building Blocks

Microarchitecture

Abstraction!

Processor datapath

Instruction Decoder Arithmetic Logic Unit

Memory

Digital Logic

Adders Multiplexers **Demultiplexers Encoders Decoders**

Registers

Flip-Flops Latches

Gates

Devices (transistors, etc.)

Decoders

Decodes input number, asserts corresponding output.

n-bit input (an unsigned number)

 2^n outputs

Built with code detectors.

Multiplexers

Select one of several inputs to forward as output.

Build a 2-to-1 MUX from gates

ex

If S=0, then $F=D_0$. If S=1, then $F=D_1$.

1. Construct the truth table.

2. Build the circuit.

8-to-1 MUX

Costume idea: MUX OX

MUX + voltage source = truth table

Buses and Logic Arrays

A **bus** is a collection of data lines treated as a single logical signal.

= fixed-width value

Array of logic elements applies same operation to each bit in a bus.

= bitwise operator

