
Latches,	Flip-flops,	and	Registers

Sequential	 logic:	fundamental	 elements	 to	store	values
Output	depends	on	inputs	and	stored	values.

(vs.	 combinational	 logic:	output	depends	only	on	inputs)

Latch:	CC-BY	Rberteig@flickr

ALU

Processor:	Data	Path	Components

Registers Memory
Instruction	
Fetch and	
Decode

12

Bistable latches

Q Q

Suppose	we	somehow	get	a	1		(or	a	0?)	on	here.

Q Q
00
=

SR	latch

Q Q
RS

Set Reset

S R Q Q' Q	(stable) Q' (stable)
0 0 0 0 ? ?
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 ? ?
1 0 ? ? 1 0
0 1 ? ? 0 1

SR	latch

Q Q
RS

Q
Q

R

S

Q

QR

S R

S Q

Q

R

S Q

Q

if	C	=	0,	then	SR	latch	stores	current	value	of	Q.
if	C	=	1,	then	D	flows	to	Q:

if	D	=	0,	then	R	=	1	and	S	=	0,	Q	=	0
if	D	=	1,	then	R	=	0	and	S	=	1,	Q	=	1

D	latch

D

C

R

S

Q

Q

Clock

Data	bit

Clocks
Clock:	free-running	 signal
with	fixed	cycle time	=	clock	period =	T.		
Clock	frequency =	1	/	clock	period

A	clock	controls	when	to	update
a	sequential	 logic	element's	 state.

Clock	period

Falling	edge

Rising	edge

Synchronous	 systems
Inputs	to	state	elements	must	be	valid on	active	clock	edge.

State
element

1

State
element

2
Combinational	 logic

D	flip-flop	with	falling-edge	trigger

D

C

QE
QmDm

Cm
D	latch

Qm

QsDs

Cs
D	latch

Qs Q

leader follower

Clock
leader	stores	D as	E

folower stores	E as	Q

Can	still	read	Qnow Qnext becomes	Qnow

Time

Reading	and	writing	 in	the	same	cycle

Clock
leader	stores	D as	E

follower	stores	E as	Q

Time

Can	write	Qnextwhile	simultaneously	reading	state	Qnow

Can	still	read	Qnow Qnext becomes	Qnow

QD

C
D Flip-Flop

QClock

D	flip-flop	=	one	bit	of	storage

QD

C
D Flip-Flop

Q

1

A	1-nybble*	register
(a	4-bit	hardware	storage	cell)

Write

Clock

0

1

0

1

QD

C
D Flip-Flop

Q
QD

C
D Flip-Flop

Q
QD

C
D Flip-Flop

Q
QD

C
D Flip-Flop

Q

*Half	a	byte!

Register	file

Read	ports
Why	2?

Read	register
selector	1
Read	register
selector	2

Write	register	
selector
Write	data

Write?

Read	data	1

Read	data	2

r

r

r

w

w

w

r	=	log2 number	of	registers
w	=	bits	in	word

Array	of	registers,	with	register	selectors,	write/read	control,
input	port	for	writing	data,	output	ports	for	reading	data.

Write	port
0	=	read
1	=	write

Read	ports
(data	out)

 C.8 Memory Elements: Flip-Flops, Latches, and Registers C-55

FIGURE C.8.7 A register fi le with two read ports and one write port has fi ve inputs and
two outputs. The control input Write is shown in color.

FIGURE C.8.8 The implementation of two read ports for a register fi le with n registers
can be done with a pair of n-to-1 multiplexors, each 32 bits wide. The register read number
sig nal is used as the multiplexor selector signal. Figure C.8.9 shows how the write port is implemented.

Read register
number 1 Read

data 1Read register
number 2

Read
data 2

Write
register

Write
Write
data

Register file

Read register
number 1

Register 0

Register 1

. . .

Register n – 2

Register n – 1

M

u

x

Read register
number 2

M

u

x

Read data 1

Read data 2

AppendixC-9780123747501.indd 55AppendixC-9780123747501.indd 55 26/07/11 6:29 PM26/07/11 6:29 PM

FIGURE C.8.9 The write port for a register fi le is implemented with a decoder that is used
with the write signal to generate the C input to the registers. All three inputs (the regis ter
number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct
data is written into the register fi le.

Write

0
1

n-to-2n

decoder

n – 2

n – 1

Register 0

C

D

Register 1

C

D

Register n – 2

C

D

Register n – 1

C

D

...

Register number
...

Register data

valid during the time it is read, as we saw earlier in Figure C.7.2. The value returned
will be the value written in an earlier clock cycle. If we want a read to return the
value currently being written, additional logic in the register fi le or out side of it is
needed. Chapter 4 makes extensive use of such logic.

Specifying Sequential Logic in Verilog
To specify sequential logic in Verilog, we must understand how to generate a clock,
how to describe when a value is written into a register, and how to specify sequential
control. Let us start by specifying a clock. A clock is not a predefi ned object in
Verilog; instead, we generate a clock by using the Verilog notation #n before a
statement; this causes a delay of n simulation time steps before the execu tion of the
statement. In most Verilog simulators, it is also possible to generate a clock as an
external input, allowing the user to specify at simulation time the number of clock
cycles during which to run a simulation.

The code in Figure C.8.10 implements a simple clock that is high or low for one
simulation unit and then switches state. We use the delay capability and blocking
assignment to implement the clock.

C-56 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 56AppendixC-9780123747501.indd 56 26/07/11 6:29 PM26/07/11 6:29 PM

Write	port (data	in)

incoming	data

register	number

write	control
clock

