# CS240 Laboratory 2 Digital Logic 

- Circuit equivalence
- Boolean Algebra/Universal gates
- Linux, C, Emacs
- Bitbucket, Mercurial


## Circuit Equivalence

Two boolean functions with same truth table = equivalent
When there is an equivalent circuit that uses fewer gates, transistors, or chips, it is preferable to use that circuit in the design

Example:
Given: $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{B} \quad \mathrm{Q}=\mathrm{A}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}$

| A B A'B' | A'B | F | A B |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | 0 | 1 | 00 | 1 | 0 | 1 | 1 |
| 010 | 1 | 1 | 01 | 1 | 0 | 0 | 1 |
| 100 | 0 | 0 | 10 | 0 | 0 | 0 | 0 |
| 110 | 0 | 0 | 11 | 0 | 0 | 0 | 0 |

$F$ and Q are equivalent because they have the same truth table.

## Identities of Boolean Algebra

- Identity law
$1 \mathrm{~A}=\mathrm{A} \quad 0+\mathrm{A}=\mathrm{A}$
- Null law
$0 \mathrm{~A}=0 \quad 1+\mathrm{A}=1$
- Idempotent law
$\mathrm{AA}=\mathrm{A} \quad \mathrm{A}+\mathrm{A}=\mathrm{A}$
- Inverse law
$\mathrm{AA}^{\prime}=0 \quad \mathrm{~A}+\mathrm{A}^{\prime}=1$
- Commutative law $\mathrm{AB}=\mathrm{BA} \quad \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
- Associative law
$(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
$(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$
- Distributive law $\mathrm{A}+\mathrm{BC}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})$ $A(B+C)=A B+A C$
- Absorption law $\mathrm{A}(\mathrm{A}+\mathrm{B})=\mathrm{A}$
$\mathrm{A}+\mathrm{AB}=\mathrm{A}$
- De Morgan's law
$(\mathrm{AB})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
$(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$


## Example:

$$
\begin{array}{rlrl}
\mathrm{F} & =\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{B} & \mathrm{Q} & =\mathrm{A}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \\
& =\mathrm{A}^{\prime}\left(\mathrm{B}^{\prime}+\mathrm{B}\right) \text { distributive } & & =\mathrm{A}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \text { absorption } \\
& =\mathrm{A}^{\prime}(1) \text { inverse } & & =\mathrm{A}^{\prime} \text { absorption } \\
& =\mathrm{A}^{\prime} \text { identity } & &
\end{array}
$$

## Universal Gates

Any Boolean function can be constructed with NOT, AND, and OR gates

NAND and NOR = universal gates
DeMorgan's Law shows how to make AND from NOR (and vice-versa)

$$
\begin{aligned}
& \mathrm{AB}=\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)^{\prime} \quad(\text { AND from NOR }) \\
& \mathrm{A}+\mathrm{B}=\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)^{\prime} \quad(\mathbf{O R} \text { from NAND })
\end{aligned}
$$




NOT from a NOR


OR from a NOR


To implement a function using only NOR gates:

- apply DeMorgan's Law to each AND in the expression until all ANDs are converted to NORs
- use a NOR gate for any NOT gates, as well.
- remove any redundant gates (NOT NOT, may remove both)

Implementing the circuit using only NAND gates is similar.

Example: $\mathrm{Q}=(\mathrm{AB})^{\prime} \mathrm{B}^{\prime}$

$$
=\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right) \mathrm{B}^{\prime}
$$

$$
=\left(\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)^{\prime}+\mathrm{B}\right)^{\prime} \quad \text { NOTE: you can use a NOR gate to produce } \mathrm{A}^{\prime}
$$ and you can do the same for B'

## Simplifying Circuits or Proving Equivalency

General rule to simplify circuits or prove equivalency:

1. Distribute if possible, and if you can't, apply DeMorgan's Law so that you can.
2. Apply other identities to remove terms, and repeat step 1.

EXAMPLE: Is ( $\left.\mathrm{A}{ }^{\prime} \mathrm{B}\right)^{\prime}(\mathrm{AB})^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ equivalent to $(\mathrm{AB})^{\prime}$ ?

$$
\begin{aligned}
\mathrm{F} & =\left(\mathrm{A}^{\prime} \mathrm{B}\right)^{\prime}(\mathrm{AB})^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \\
& =\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \\
& =\mathrm{AA}^{\prime}+\mathrm{AB} \mathrm{~B}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{B}^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \\
& =0+\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \\
& =\mathrm{AB} \mathrm{~B}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \\
& =\mathrm{B}^{\prime}\left(\mathrm{A}^{\prime}+\mathrm{A}^{\prime}\right)+\mathrm{A}^{\prime} \mathrm{B} \\
& =\mathrm{B}^{\prime}(1)+\mathrm{A}^{\prime} \mathrm{B} \\
& =\mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{B} \\
& =\mathrm{B}^{\prime}+\left(\mathrm{A}+\mathrm{B}^{\prime}\right)^{\prime} \\
& =\left(\mathrm{B}^{\prime}\left(\mathrm{A}+\mathrm{B}^{\prime}\right)\right)^{\prime} \\
& =\left(\mathrm{AB}+\mathrm{BB}^{\prime}\right)^{\prime} \\
& =(\mathrm{AB}+1)^{\prime} \\
& =(\mathrm{AB})^{\prime}
\end{aligned}
$$

-- can't distribute
DeMorgan's
distributive
inverse and idempotent
identity
distributive
inverse
identity
DeMorgan's
DeMorgan's
distributive
inverse
identity

## Demo LogicWorks

