

CS240 Laboratory 2

Digital Logic

• Circuit equivalence

• Boolean Algebra/Universal gates

• Linux, C, Emacs

• Bitbucket, Mercurial

Circuit Equivalence

Two boolean functions with same truth table = equivalent

When there is an equivalent circuit that uses fewer gates, transistors, or chips,
it is preferable to use that circuit in the design

Example:
Given: F = A'B' + A'B Q = A’ + A’B + A’B’

A B A’B’ A’B F A B A’ A’B A’ B’ Q
0 0 1 0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 1 0 0 1
1 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0

F and Q are equivalent because they have the same truth table.

Identities of Boolean Algebra

- Identity law 1A = A 0 + A = A

- Null law 0A = 0 1 + A = 1

- Idempotent law AA = A A + A = A

- Inverse law AA' = 0 A + A' = 1

- Commutative law AB = BA A + B = B + A

- Associative law (AB)C = A(BC)

 (A + B) + C = A +(B + C)

- Distributive law A + BC =(A + B)(A + C)
 A(B + C) = AB + AC

- Absorption law A(A + B) = A
 A + AB = A

- De Morgan's law (AB)' = A' + B'
 (A + B)' = A'B’

Example:
 F = A’B’ + A’B Q = A' + A'B + A'B'
 = A’(B’ + B) distributive = A’ + A’B’ absorption
 = A’(1) inverse = A’ absorption
 = A’ identity

Universal Gates

Any Boolean function can be constructed with NOT, AND, and OR gates

NAND and NOR = universal gates

DeMorgan’s Law shows how to make AND from NOR (and vice-versa)

AB = (A' + B')' (AND from NOR)
A + B = (A'B')' (OR from NAND)

NOT from a NOR

OR from a NOR

To implement a function using only NOR gates:

- apply DeMorgan's Law to each AND in the expression until all ANDs
are converted to NORs

- use a NOR gate for any NOT gates, as well.
- remove any redundant gates (NOT NOT, may remove both)

Implementing the circuit using only NAND gates is similar.

Example: Q = (AB)'B'

 = (A' + B')B'

 = ((A'+B')' + B)' NOTE: you can use a NOR gate to produce A’
 and you can do the same for B’

Simplifying Circuits or Proving Equivalency

General rule to simplify circuits or prove equivalency:

1. Distribute if possible, and if you can’t, apply DeMorgan’s Law so that
you can.

2. Apply other identities to remove terms, and repeat step 1.

EXAMPLE: Is (A’B)’(AB)’ + A’B’ equivalent to (AB)’?

F = (A’B)’(AB)’ + A’B’ -- can’t distribute
 = (A + B’) (A’ + B’) + A’B’ DeMorgan’s
 = AA’ + AB’ + A’B + B’B’ + A’B’ distributive
 = 0 + AB’ + A’B + B’ + A’B’ inverse and idempotent
 = AB’ + A’B + A’B’ identity
 = B’ (A+ A’) + A’B distributive
 = B’(1) + A’B inverse
 = B’ + A’B identity
 = B’ + (A + B’)’ DeMorgan’s
 = (B(A + B’))’ DeMorgan’s
 = (AB + BB’)’ distributive
 = (AB + 1)’ inverse
 = (AB)’ identity

Demo LogicWorks

