
CS 240 Lab 2
Digital Logic

and
Introduction to Linux

• Truth Tables, Sum-of-Products

• Boolean Identities

• Universal Gates

• Integrated circuits

• Binary and Hexadecimal Numbers

• Introduction to Linux

Truth Tables and Sum-of-Products

Truth tables specify the output for all the given input combinations of a
function.

An input combination can be expressed by ANDing together the inputs (each
input or its’ complement is used in the expression, depending upon which
combination is being expressed)

A function can then be expressed as a sum-of-products by ORing together the
input combinations which make the function true.

A B A’B’ A’B A’B’ + A’B A B A’ A’B A’ B’ A’+A’B+A’B’
0 0 1 0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 1 0 0 1
1 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0

 F = A'B' + A'B Q = A’ + A’B + A’B’

F and Q are equivalent (produce the same function) when they have the same
truth table.

When there is an equivalent circuit that uses fewer gates, transistors, or chips, it
is preferable to use that circuit in the design

Identities of Boolean Algebra

Equivalency can also be proved using the identities of Boolean algebra

- Identity law 1A = A 0 + A = A

- Null law 0A = 0 1 + A = 1

- Idempotent law AA = A A + A = A

- Inverse law AA' = 0 A + A' = 1

- Commutative law AB = BA A + B = B + A

- Associative law (AB)C = A(BC)

 (A + B) + C = A +(B + C)

- Distributive law A + BC =(A + B)(A + C)
 A(B + C) = AB + AC

- Absorption law A(A + B) = A
 A + AB = A

- De Morgan's law (AB)' = A' + B'
 (A + B)' = A'B’

Example:
 F = A’B’ + A’B Q = A' + A'B + A'B'
 = A’(B’ + B) distributive = A’ + A’B’ absorption
 = A’(1) inverse = A’ absorption
 = A’ identity

Universal Gates

Any	Boolean	function	can	be	constructed	with	only	NOT,	AND,	and	OR	
gates	

But also with either only NAND or only NOR gates = universal gates

DeMorgan’s Law shows how to make AND from NOR (and vice-versa)

AB = (A' + B')' (AND from NOR)
A + B = (A'B')' (OR from NAND)

NOT from a NOR

OR from a NOR

To implement a function using only NOR gates:

- apply DeMorgan's Law to each AND in the expression until all ANDs
are converted to NORs

- use a NOR gate for any NOT gates, as well.
- remove any redundant gates (NOT NOT, may remove both)

Implementing the circuit using only NAND gates is similar.

Integrated Circuits (Chips)

Logic Diagrams

Not the same as pin-outs! Show information
about the logical operation of the device.

Inputs on left side of diagram
Outputs on right
Voltage shown on top
Ground shown on bottom

Binary and Hexadecimal Numbers

Hex Binary .
 QD QC QB QA
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1

Hex can be converted to binary and vice versa by grouping into 4
bits.

111101012 = F516 3716 = 001101112

