
/*	bitOr	can	be	implemented	using	only	~	and	&	by	applying	DeMorgan’s	Law	to	x	OR	y	*/	
int	bitOr(int	x,int	y)	{	
	 return	~(~x&~y);	
}	
	
/*	bitOddParity	can	be	implemented	by	adding	every	bit	to	every	other	bit.		Since	we	only	care	
whether	the	final	result	is	odd	or	even,	we	are	only	concerned	with	the	value	of	the	least	
significant	bit	each	time	we	add.		Using	bitwise	XOR	to	perform	the	additions	allows	us	to	add	
multiple	pairs	of	bits	at	a	time	
*/	
int	bitOddParity(int	x)	{	
	 int	x16	=	(x	>>	16)	^	x;	//bitwise	XOR	the	top	16	bits	with	the	bottom	16	bits	of	x	
	 int	x8	=	(x16>>8)	^	x16;	//add	the	pairs	of	bits	from	the	result	of	the	previous	step	
	 int	x4	=	(x8>>4)	^	x8;//add	the	pairs	of	bits	from	the	result	of	the	previous	step	
	 int	x2	=	(x4	>>	2)	^x4;//add	the	pairs	of	bits	from	the	result	of	the	previous	step	
	 int	x1	=	(x2	>>	1)^x2;//add	the	pairs	of	bits	from	the	previous	step	
	 return	!(x1&1);	//the	even	parity	bit	is	in	the	least	significant	bit	at	this	point,	so	mask		
																																								//	all	the	other	bits	and	negate	to	get	the	odd	partity	bit.	
}	


