CS 240 Lab 3
Basic Digital Circuits

Review of Two’s Complement and Overflow
Exclusive Or
Adder

Bit Puzzles

Two’s Complement and Overflow

Given n bits, the range of binary values which can be represented using
Unsigned representation: 0 —>2" — 1

Signed representation: — 2" ->2""'— 1, MSB is used for sign

Two’s Complement (signed representation):
Most significant /leftmost bit (0/positive, 1/negative)

Example: given a fixed number of 4 bits:
1000, 1s negative.
0111, 1s positive.

Overflow
Given a fixed number of n available bits:
Overflow occurs if a value cannot fit in n bits.

Example: given 4 bits:
The largest negative value we can represent is -8, (1000,)
The largest positive value we can represent 1s +7;3 (0111,)

Overflow in Addition

When adding two numbers with the same sign which each can be
represented with n bits, the result may cause an overflow (not fit in n

bits).
An overflow occurs when adding if:

- Two positive numbers added together yield a negative result, or
- Two negative numbers added together yield a positive result, or
- The Cin and Cout bits to the most significant pair of bits being
added are not the same.

An overflow cannot result if a positive and negative number are added.

Example: given 4 bits:
0111,

+ 0001,
1000, overflow NOTE: there 1s not a carry-out!

In two’s complement representation, a carry-out does not indicate an
overflow, as it does in unsigned representation.

Example: given 4 bits,
1001, (-710)
+ 1111, (-140)
1 1000, (-8;9) no overflow, even though there is a carry-out

Exclusive Or
Useful for comparisons

A parity bit is an extra bit of information which is sent when data is
transmitted, to check for errors in transmission. For a given set of bits,
the number of bits whose value is 1 is counted. The parity bit is an
extra bit which 1s also sent with the original data. The party bit 1s set to
0 or 1 to make the total number of 1 bits even.

ABCPeven
0000
0011
0101
0110
1001
1010
1100
1 111

Half-Adder — adds two one-bit wvalues

A A B Sum Cout
. 0 0
B ' D_ SUM 0 1
1 0
1 1

Cont

Full Adder — incorporates

a carry-in

Cin

A)
B)

Cont

j:)— SUM

A B Cin Sum Cout

0 0 0 0 0 Sum = A®@B®Cin

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0 Cout = AB+(A®B)Cin
1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

n-bit adder = n 1-bit adders

Carry-out of each adder = Carry-in of the adder
for next two most significant bits being added

Bit Puzzles
Example:

/* 1sPower2 returns 1 is x is a power of 2, and 0 otherwise
isPower2(5) = 0, isPower2(8) = 1, isPower2(0) =0

No negative value is a power of 2
Legal operations: | ~ & ™ |+ << >>
Max operations: 20

Rating: 4
*/

int isPower2(int x) {
return 2

b

Y ou must write C code to return the correct value for a given input
Constants ,must not be larger than OxFF (decimal 256)

Y ou may not use conditionals or loops

Tips
Although integers are 32-bit values in this program, assume a smaller
number of bits in your handwritten examples to make your binary
numbers easier to work with
Handwrite some specific binary values and manipulate them with
boolean operators.
Here are some simple manipulations and tips which may help you find
a solution:

o Complement the number

o Add and/or subtract 1

o Mask (bitwise AND with a mask value to isolate bits)

o Shift left and then right again (or vice versa)

o Use Exclusive OR to compare values

o Bitwise OR a general solution with a special case (such as 0)

o !1(0) =1, but !(any other number) =0

