Fixed-Point Representation

Implied binary point.

 $b_7 b_6 b_5 b_4 b_3$ [.] $b_2 b_1 b_0$ $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$

range: difference between largest and smallest representable numbers **precision:** smallest difference between any two representable numbers

fixed point = fixed range, fixed precision

Three kinds of values

 $V = (-1)^{s} * M * 2^{E}$

1. Normalized: M = 1.xxxxx... As in scientific notation: $0.011 \times 2^5 = 1.1 \times 2^3$ **Representation advantage?**

2. Denormalized, near zero: M = 0.xxxxx..., smallest E Evenly space near zero.

exp

frac

3. Special values:

0.0: s = (0 exp = 000	frac = 000
+inf, -inf: division by 0.0	exp = 111	frac = 000
NaN ("Not a Number"): sqrt(-1), $\infty - \infty$, $\infty * 0$, etc.	exp = 111	frac ≠000

IEEE Floating Point Standard 754 IEEE = Institute of Electrical and Electronics Engineers

Numerical form:

$$V_{10} = (-1)^{S} * M * 2^{E}$$

Sign bit s determines whether number is negative or positive Significand (mantissa) M usually a fractional value in range [1.0,2.0) **Exponent** *E* weights value by a (-/+) power of two Analogous to scientific notation

Representation:

Δ

8

MSB s = sign bit s exp field encodes E (but is not equal to E) frac field encodes M (but is not equal to M)

> frac exp

Numerically well-behaved, but hard to make fast in hardware

Normalized values, with float example $V = (-1)^{s} * M * 2^{E}$ exp frac s k=8 n=23 Value: float f = 12345.0; $= 1100000111001_{2}$ 12345₁₀ = 1.1000000111001₂ x 2¹³ (normalized form) Significand: M = 1.1000001110012 frac= 100000111001000000000000000 **Exponent:** $E = exp - Bias \rightarrow exp = E + Bias$ 13 Ε = $2^7 - 1 = 2^{k-1} - 1$ Splits exponents roughly -/+ Bias = 127 = 140 = exp = 10001100, Result: 0 10000001110010000000000 10001100 exp frac

6

