Fixed-Point Representation

Implied binary point.

$b_{7} b_{6} b_{5} b_{4} b_{3}$ [.] $b_{2} b_{1} b_{0}$
$b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$ [.]
range: difference between largest and smallest representable numbers precision: smallest difference between any two representable numbers

fixed point = fixed range, fixed precision

IEEE Floating Point Standard 754
 IEEE = Institute of Electrical and Electronics Engineers

Numerical form:

$$
\mathrm{V}_{10}=(-1)^{S} * M * 2^{E}
$$

Sign bit s determines whether number is negative or positive
Significand (mantissa) M usually a fractional value in range $[1.0,2.0$)
Exponent E weights value by a ($-/+$) power of two
Analogous to scientific notation

Representation:

MSB s = sign bit s
exp field encodes E (but is not equal to E)
frac field encodes \boldsymbol{M} (but is not equal to M)

s	\exp	frac

Numerically well-behaved, but hard to make fast in hardware

Normalized values, with float example

```
V=(-1)S*M*2'_
```

Value: float $\mathrm{f}=12345.0$;
$12345_{10}=11000000111001_{2}$
$=1.1000000111001_{2} \times 2^{13}$ (normalized form)
Significand:
$M=1.1000000111001_{2}$
frac $=1 \underline{10000001110010000000000} 2$
Exponent: $E=\exp -$ Bias $\rightarrow \exp =E+$ Bias

E	$=$	13	
Bias	$=$	$127=$	$2^{7}-1=\mathbf{2}^{k-1}-\mathbf{1}$
\exp	$=$	$140=$	10001100_{2}

Result:
01000110010000001110010000000000

2. Denormalized Values: near zero

"Near zero": exp = 000... 0

Exponent:

$$
E=1+\exp -\text { Bias }=1-\text { Bias not: exp }- \text { Bias }
$$

Significand: leading zero

$$
\begin{aligned}
& M=0 . \mathbf{x x x} . . . \mathbf{x}_{2} \\
& \text { frac }=\mathbf{x x x} . . . \mathbf{x}
\end{aligned}
$$

Cases:
$\exp =000 \ldots 0$, frac $=000 \ldots 0$
$0.0,-0.0$

Value distribution example

6-bit IEEE-like format

Try to represent 3.14, 6-bit example

6-bit IEEE-like format
Bias $=2^{3-1}-1=3$

Value: 3.14;
$3.14=11.001000111101011100001010000 .$.
$=1.1001000111101011100001010000 \ldots 2 \times 2^{1}$ (normalized form)
Significand:
$M=1.10010001111010111011100001010000 \ldots 2$
frac=
$\underline{10}_{2}$
Exponent:
$E=1 \quad$ Bias $=3 \quad \exp =4=100_{2}$
Result:
$010010=1.10_{2} \times 2^{1}=3$ next highest?

