Wellesley CS 240

Integer Representation

Representation of integers: unsigned and signed
Modular arithmetic and overflow

Sign extension

Shifting and arithmetic

Multiplication

Casting

modular arithmetic, overflow
15

11 1011 14 71111 0000 _! 13 1101
13 / 1110 0001 2
+2 +0010 o010 +5 +0101
12 4-bit oo11 | 3
unsigned
111011 integers 0100 | 4
1010 0101
10\ 1001 0110 5
1000 0111
8 7
x+y in n-bit unsigned arithmetic is in math

unsigned overflow =

Unsigned addition overflows if and only if

sign-magnitude

Most-significant bit (MSB) is sign bit

0 means non-negative 1 means negative

Remaining bits are an unsigned magnitude

8-bit sign-magnitude:
00000000 represents

01111111 represents
10000101 represents

10000000 represents

Anything weird here?

Arithmetic?

Example:
4-31=4+(-3)

|

00000100
+10000011

Zero?

8-bit representations

00001001 10000001

11111111 00100111

n-bit two's complement numbers:

minimum = maximum =

10

4-bit unsigned vs. 4-bit two’s complement

1011

1x23+40x22+1x2 +1x2° 1fiP+Ox22+1x21+1x2°

difference=___ =2—]— -=>-5

11 < -

15
1111
1110
1101

0000
0001
0010
1100 . 0011
11\1011

1010
1001
1000

1111
1110
1101

1100

0000
0001
0010
0011

13

12

4-bit
two's
complement

unsigned 0100 | 4

0101
0110
0111

1000 0111

11

Another derivation

How should we represent 8-bit negatives?
* Forall positive integers x,
we want the representations of x and —x to sum to zero.

* We want to use the standard addition algorithm.

00000001
e — i —
00000000 00000000

00000010 00000011

s
00000000

Find a rule to represent —x where that works...

16

unsigned shifting and arithmetic

o 00011011
y=x<<2; M//// logical shift left
y == 108 01101100
unsigned
11101101 x = 237;
logical shift right \<§<S§<S§§Q}\ y=x>>2;
00111011 y==59

20

two's complement shifting and arithmetic

b, 10011011
y==108 01101100 logicalshift left
signed
11101101 x=-19;
arithmetic shift right l\\\\\\\\\ yEx>>2;
11111011

y::—

21

shift-and-add

Available operations
x << k implements x * 2k

X +y

Implement y = x * 24 usingonly <<, +, and integer literals

22

What does this function compute?

unsigned puzzle (unsigned x, unsigned V)

unsigned result = 0;
for (unsigned i = 0; i < 32; 1i++){
if (v & (1 << 1)) |
result = result + (x << 1);

}

return result;

{

23

