Dynamic Memory Allocation in the Heap
(malloc and free)

Explicit allocators (a.k.a. manual memory management)

Allocator Basics

Pages too coarse-grained for allocating individual objects.
Instead: flexible-sized, word-aligned blocks.

N N e

— -
I:l Allocated word

Allocated block Free block

(4 words) (3 words)

pointer to newly allocated block

of at least that size number of contiguous bytes required

¥

void* malloc(size t size);
/ pointer to allocated block to free
void free (void* ptr);

Allocator Goals: malloc/free

1. Programmer does not decide locations of distinct objects.

Programmer decides: what size, when needed, when no longer needed

2. Fast allocation.

mallocs/second or bytes malloc'd/second

3.Highmemoryutilization. [[[[[[[T T T T TTT]

Most of heap contains necessary program data.
Little wasted space.

Enemy: fragmentation — unused memory that cannot be allocated.

Internal Fragmentation
payload smaller than block

block
A

ayload
w, pay A

\ Internal /

fragmentation

Causes
metadata
alignment
policy decisions

External Fragmentation (64-bit words)

Total free space large enough,
but no contiguous free block large enough

pl=malloe32); [| [[[[[[[][]]T]]

malloc(40); | [[[[[[T T[] [T [T]]]

free (p2) ; HNEEEEEEEEEEEEEEn

P2

p3 = malloc(48);

p4 = malloc(48);

Depends on the pattern of future requests.

Implementation Issues

1. Determine how much to free given just a pointer.
2. Keep track of free blocks.
3. Pick a block to allocate.

4. Choose what do with extra space when allocating a structure
that is smaller than the free block used.

5. Make a freed block available for future reuse.

Knowing How Much to Free

Keep length of block in header word preceding block

‘\

Takes extra space!

po =malloc(32); | | [[[| [[[[o] [[[] | []

block size metadata data payload

greeo); | | [[T [P PT T[T [T]

Keeping Track of Free Blocks

Method 1: Implicit list of all blocks using length

o= cmm~ e ===
- - ~
~ ~ - ~

- 7 A 'S
[aof [[[[s2f [as] [[[] [as] |

Method 2: Explicit list of free blocks using pointers

—_
[aof A7] [[s2f [[as] | [[| [as] |

Method 3: Seglist
Different free lists for different size blocks

More methods that we will skip...

10

Implicit Free List: Block Format

Block metadata: 1 word
1. Block size — Steal LSB for status flag.
2. Allocation status block size | a «— LSB=1:allocated

LSB = 0: free

Store in one header word.
payload
(application data,
when allocated)

optional padding

!

16-byte aligned sizes have
4 zeroes in low-order bits

Implicit Free List: Heap Layout

Special end-heap word

Block Header (metadata) Looks like header of
Start of heap block size | block allocated? zero-size allocate block.
held B2ty | loalo] | ‘ ‘ EX I Joi1]
\ \ May force
Initial word can't internal fragmentation. D Free word

be part of block.
/ I:I Allocated word
\ I:I Allocated word wasted

00000000
00010000 Payloads start at 16-byte (2-word) alignment.
00100000 Blocks sizes are multiples of 16 bytes.
00110000
11 12
Implicit Free List: Finding a Free Block Implicit Free List: Allocating a Free Block
First fit:
Search list from beginning, choose first free block that fits | 16| |48| | | | | |16| |
Nextfit:. | | | N p = malloc(24); Allocated space < free space.
Do first-fit starting where previous search finished Use it all? Split it up?
Best fit:
Search the list, choose the best free block: fits, with fewest bytes left over | 16| |32|f | | |16| |16| |
P
Block Splitting
Now showing allocation status flag implicitly with shading.
13 14

Implicit Free List: Freeing a Block

16 |32|'| | ls] [a6] |

P
free (p) ; Clear allocated flag.
L6l [s2] [| [16] [a6] |

T

ion!
malloc (40) ; 83 External fragmentation!

Enough space, not one block.

15

Coalescing Free Blocks

el T se] [| 14 Jas]']
P
free (p) Coalesce with following free block.
B2 [[fas] [[[1d [a6] |
logically gone

Coalesce with preceding free block?
16

[Knuth73]
Bidirectional Coalescing: Boundary Tags

Header —— block size | a

payload
(application data,
when allocated)

optional padding

Boundary tag

(footer) block size a

P

32 32|32 32|48 48|32 32

‘\/‘_/_/

17

Constant-Time Coalescing: 4 cases

mi |1 mi |1 mi |1 mi |1
ml 1 ml 1 ml 1 ml 1
n 1 n 0 n 1 n+m2 0
Freed Block | —> Freed Block —>
n 1 n n 1
m2 1 m2 1 m2 0
m2 |1 m2 |1 m2 Jo n«m2 |0
ml | 0 n+ml | 0 ml | 0 n+tml+m2 | 0
ml 0 ml
n 1 n 1
Freed Block — Freed Block _—
n 1 n+ml 0 n 1
m2 1 m2 1 m2
m_ [1 m2_ [1 m2 0 n+mi+m2 | 0

19

Summary: Implicit Free Lists

Implementation: simple

Allocate:
Free:

O(blocks in heap)

Memory utilization: depends on placement policy

Not widely used in practice
some special purpose applications

Splitting, boundary tags, coalescing are general to all allocators.

20

Explicit Free Lists

Allocated block: Free block:

block size | a

block size | a

next pointer

payload
(application data,
when allocated)

prev pointer

optional padding

block size a block size a

(same as implicit free list)

Explicit list of free blocks rather than implicit list of all blocks.

21

Explicit Free Lists: List vs. Memory Order

Abstractly: doubly-linked lists Next

A8 [c [

Previous

Concretely: free list blocks in any memory order

/
A ‘A : \ B
32| 7| [s2fs2] | [s2fas] 7| N | [as32] | [s2[32}], [32]
c

Previous

List Order # Memory Order

22

Explicit Free Lists: Allocating a Free Block

Before ’—
°
06
After % (with splitting)

I.)R |

= malloc(..)

23

Explicit Free Lists: Freeing a Block
Insertion policy: Where in the free list do you add a freed block?
LIFO (last-in-first-out) policy
Pro: simple and constant time

Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy
Con: linear-time search to insert freed blocks

Pro: studies suggest fragmentation is lower than LIFO

LIFO Example: 4 cases of freed block neighbor status.

25

Freeing with LIFO Policy:
between allocated blocks

Before

Head HEEEEEEEEEEE @E

Insert the freed block at head of free list.

After

ot W CLTTI90T] 1T WK

26

Summary: Explicit Free Lists

Implementation: fairly simple

Allocate: o(blocks) vs. O(all blocks)
Free: 0(1) vs. O(1)

Memory utilization:
depends on placement policy
larger minimum block size (next/prev) vs. implicit list

Used widely in practice, often with more optimizations.

Splitting, boundary tags, coalescing are general to all allocators.

36

Summary: Allocator Policies

All policies offer trade-offs in fragmentation and throughput.

Placement policy:

First-fit, next-fit, best-fit, etc.

Seglists approximate best-fit in low time
Splitting policy:

Always? Sometimes? Size bound?

Coalescing policy:
Immediate vs. deferred

41

