Programming with Memory
via C, pointers, and arrays

Why not just registers?
* Represent larger structures
* Computable addressing
* Indirection

byte-addressable memory = mutable byte array

OxFFeesF
A
(-—-\
. Cell / location = element
& 3_ * Addressed by unique numerical address
f;" r% * Holds one byte
o
| |2 »n * Readable and writable
. T n
. g w
S .
3 P Address = index
z @ * Unsigned number
* Represented by one word
6;00",0 * Computable and storable as a value

multi-byte values in memory

Store across contiguous byte locations. 64-bit
Words

Bytes

Alignment (why?)

Bit order within byte always same.
Byte ordering within larger value?

Address
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Endianness: To store a multi-byte value in memory,
which byte is stored first (at a lower address)?

most significant byte least significant byte
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Little Endian: |least significant byte first

* low order byte at low address, high order byte at high address
* used by x86, ...

Big Endian: most significant byte first

* high order byte at low address, low order byte at high address
* used by networks, SPARC, ...




Data, Addresses, and Pointers

address = index of a cell in memory
pointer = address represented as data
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C: variables are memory locations (for now)

Compiler maps variable = memory location.
Declarations do not initialize!

int x; // x at 0x20
int y; // y at 0x0C

0x24
0x20 X
x = 0; // store 0 at 0x20 Ox1C
0x18
// store 0x3CD02700 at 0xO0C Ox14
y = 0x3CD02700; 010
oxoc Y
0x08
// load the contents at 0x0C, 0x04
// add 3, and store sum at 0x20 0x00

x =y + 3;
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C: Address and Pointer Primitives

address = index of a cell/location in memory
pointer = address represented as data

Expressions using addresses and pointers:
&  address of the memory location representing
*  contents at the memory address givenby

a.k.a. "dereference

Pointer types:
___* address of a memory location holdinga

& = address of
* = contents at

C: Address and Pointer Example

Declare a variable, p J

int* p;

\{that will hold the address of a memory location holding an int }

int x = 5;

Declare two variables, x and y, that hold ints,
int y = 2;

and store 5 and 2 in them, respectively.

Get the address of the memory location

P = &x3 representing x
...and storeitinp. Now, “ppoints to x.”

y =1+ *pj | stored inp

... and store it in the memory location representing y. ]

Add 110 | the contents of memory at the addressf
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C: Address and Pointer Example

& = address of
* = contents at

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

. Declaration: int a[6]; : t
C assignment: can be used as an immutable pointer.
Left-hand-side = right-hand-side; element type
: number of
location value A
int* p; // p: 0x04
int x = 5; // x: Ox14, store 5 at 0x14 0x24 Y Ox24
int y = 2; // y: 0x24, store 2 at 0x24 0x20 Ox20
P = &x; // store 0x14 at 0x04 OxiC Ox1c
// load the contents at 0x04 (0x14) 0x18 Ox18
0x14 X Ox14
// load the contents at 0x14 (0x5) ox10 0x10
// add 1 and store sum at 0x24 OXOC 0xOC
y =1+ *p; 0x08 0x08
// load the contents at 0x04 (0x14) 0x04 0x04
// store O0xFO0 (240) at 0x14 0x00 0x00
*p = 240;
Arrays are adjacent memory locations
C: Arravs storing the same type of data. C: Array A"ocaﬂon
[ ] y . ?
a is a name for the array’s base address,
Declaration: int a[6]; can be used as an immutable pointer. Basic Principle
Indexing: a[0] = 0xf0; Address of a[i] is base address a T A[N];
a[5] = a[0]; lus i times element size in bytes. '
- vt Array of length N with elements of type Tand name A
No bounds a[6] = OxBAD; Contiguous block of N*sizeof (T) bytes of memory
check: a[-1] = OxBAD; char string(12]; [ T 11 1T 11T 1111 Use sizeof to determine
Pointers: int* p; 0x24 ] o proper size in C.
ival p = a; 0x20 3[5]
equivalent p = &a[0]; 0x1C int val[5];
*p = 0xA; Ox18 X x+4  x+8  x+12  x+16  x+20
Ox14
double al[3];
valeny 4 PL11 = 0xB; 0x10
equivalen *(p + 1) = 0xB; oxoc  a[o0] X x+8 x+16 x+24
p=p+ 2; 0x08 char* p(3]; m
0x04 P (orchar *p[3];)
array indexing = address arithmetic 0x00 X x+4 x+8 x+12
Both are scaled by the size of the type. x86-64
*p = a[l] + 1; X X+8 x+16 x+24
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C: Array Access

Basic Principle
T A[N];
Array of length N with elements of type Tand name A
Identifier A can be used as a pointer to array element 0: A has type T#*

int val([5]; 0 2 4 8 1
X x+4 x+8 x+12 x+16 x+20
Reference Type Value

val[4] int

val int *

val+1 int *

&val[2] int *

val[5] int

*(val+1) int

val +i int * 33

C: Null-terminated strings

C strings: arrays of ASCII characters ending with null character.

0x48 | Ox61| Ox72| Ox72| Ox79 | Ox20 | Ox50| Ox6F | Ox74 | 0x74 | Ox65| 0x72| Ox00
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Does Endianness matter for strings?

int string length(char str[]) ({

C:*and []

C programmers often use * where you might expect []:
e.g., char*:
« pointer to a char
« pointer to the first char in a string of unknown length
int strcmp (char* a, char* b);
int string length(char* str) {

// Try with pointer arithmetic, but no array indexing.

Memory Layout

Addr Perm Contents Managed by Initialized
2N_1 A
Stackl RW Procedure context Compiler Run time
? v
I Dynamic Programmer,
Heap RW data structures malloc/free, Run time
new/GC
. Global variables/ Compiler/
Statics static data structures Assembler/Linker Sl
. . . Compiler/
Literals R String literals Assembler/Linker Startup
Text X Instructions el Startup

Assembler/Linker




C: Dynamic memory allocation in the heap

Heap:
— —
Allocated block Free block

Managed by memory allocator:

pointer to newly allocated block
of at least that size number of contiguous bytes required

¥ ¥

void* malloc(size t size);
/ pointer to allocated block to free

void free (void* ptr);

C: standard memory allocator

#include <stdlib.h> // include C standard library

void* malloc(size_t size)
Allocates a memory block of at least size bytes and returns its address.
If error (no space), returns NULL.
Rules:
Check for error result.

Cast result to relevant pointer type.
Use sizeof(...) to determine size.

void free (void* p)
Deallocates the block at p, making its space available for new allocations.
p must be amalloc result that has not yet been freed.

Rules:
p must be amalloc result that has not yet been freed.
Do not use *p after freeing.
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C: Dynamic array allocation C: Arrays of pointers to arrays of ...
#define ZIP LENGTH 5
int* zip = (int*)malloc(sizeof (int)*ZIP LENGTH) ; int** zips = (int**)malloc(sizeof (int¥*)*3);
if (zip == NULL) { // if error occurred

perror ("malloc"); // print error message zips[0] = (int*)malloc(sizeof (int) *5);

exit (0) ; // end the program
} int* zip0 = zips[0];

zip | 0x7fedd2400dcO | Ox7fff58bdd938 zip0[0] = O;

zip[0] = O; zips[0] [1] = 2;
zipl) - 2 ] ortecsoue xips (0] (2] = 4
zipl[2] = 4; 7] ox7fedd2400dcs zips[0] [3] = 8;
zip[3] = 8; 2 | ox7fedd2400dca zips[0] [4] = 1;
zip[4] = 1; \ 0 0x7fedd2400dc0/
printf("zip is"); zips E\'
for (int i = 0; i < ZIP LENGTH; i++) { I n I 5T 55

printf (" %$d", zipl[il):; — —
}
printf ("\n");

_—1 0 2 4 8 1_|
free(zip) ; 21P +0 +4 +8 +12 +16 +20 0 1 21401811 ]
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C: Memory-Related Perils and Pitfalls

Terrible things to do with pointers, part 1.

Dereferencing bad pointers

See later exercises for:
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables

Freeing blocks multiple times
Referencing freed blocks
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C: scanf reads formatted input

int val; <[

scanf (“%d4d”,

Declared, but not initialized
- holds anything.

&val) ;

T —

Read one int
from input.

Store it in memory
at this address.

where the contents of val is stored:

vall| BA D4 FA

CE

OX7FFFFFFFFFFFFF3C
OX7FFFFFFFFFFFFF38
OX7FFFFFFFFFFFFF34

} i.e., store it in memory at the address

store into memory at OxFFFFFF38.
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C: classic bug using scanf

int wval; <ii

- holds anything.

Declared, but not initialized}

scanf (“%d”,

val) ;
—

Read one int
from input.

Store it in memory
at this address.

1

val| BA D4 FA CE

CA FE 12 34

OX7FFFFFFFFFFFFF3C
Ox7FFFFFFFFFFFFF38
OX7FFFFFFFFFFFFF34

0xO00000000BADA4FACE

i.e., store it in memory at the address
given by the contents of val:
store into memory at OxBAD4FACE.

Best case: segmentation fault,
or bus error, crash.

Bad case: silently corrupt data

stored at address OxBAD4FACE,

and val still holds OxBAD4FACE.

Worst case: arbitrary corruption 51

C: memory error messages

OKAY, HUMAN. YOU KNOW WHEN YOURE [ AND SUDDENLY YOU
HUK? 3 FALLING ASLEER AND | MISSTER, STUMBLE,
1UR: YOU IMAGINE YOURSELF | AND JOLT AWAKE?

BEFORE YoU WALKING OR YEAH!
JHT (OMPILE, M SOMETHING, il ﬁ
LISTEN Up % ?

http://xkcd.com/371/

11: segmentation fault ("segfault"”, SIGSEGV)
accessing address outside legal area of memory

10: bus error

WELL, THATS WHAT A
SEGFAULT FEELS UKE.

3
DOUBLE - CHECK YOUR
DAMN POINTERYS, OKAY?

 Sul

accessing misaligned or other problematic address

More to come on debugging!




