Programming with Memory
via C, pointers, and arrays

Why not just registers?
* Represent larger structures
* Computable addressing
* Indirection

byte-addressable memory = mutable byte array

OxFFeesF
A
(-—-\
. Cell / location = element
& 3_ * Addressed by unique numerical address
f;" r% * Holds one byte
o
| |2 »n * Readable and writable
. T n
. g w
S .
3 P Address = index
z @ * Unsigned number
* Represented by one word
6;00",0 * Computable and storable as a value

multi-byte values in memory

Store across contiguous byte locations. 64-bit
Words

Bytes

Alignment (why?)

Bit order within byte always same.
Byte ordering within larger value?

Address

Ox1F
Ox1E
0x1D
0x1C
0x1B
Ox1A
0x19
0x18
0x17
0x16
0x15
Ox14
0x13
0x12
Ox11
0x10
OxOF
0x0E
0x0D
0x0C
0x0B
Ox0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00

Endianness: To store a multi-byte value in memory,
which byte is stored first (at a lower address)?

most significant byte least significant byte

. _,_./\\.;__ - _/\

Ve ™ a TN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 987 6 5 4 3 2 1 0
2A B6 00 0B

Contents Contents
2A 0B
B6 00
00 B6
0B 2A

Little Endian: |least significant byte first

* low order byte at low address, high order byte at high address
* used by x86, ...

Big Endian: most significant byte first

* high order byte at low address, low order byte at high address
* used by networks, SPARC, ...

Data, Addresses, and Pointers

address = index of a cell in memory
pointer = address represented as data

0x24
00 ;00 (00 ' FO 0x20
O0x1C
0x18
O0x14
00 ;00 ;00 :0C 0x10
0x0C

00 '00 '00 20 | Ox08
0x04

00 : 00 ;00 : 08 | Ox00

F & &8

S S & &
memory drawn as 32-bit values,
little endian order

C: variables are memory locations (for now)

Compiler maps variable = memory location.
Declarations do not initialize!

int x; // x at 0x20
int y; // y at 0x0C

0x24
0x20 X
x = 0; // store 0 at 0x20 Ox1C
0x18
// store 0x3CD02700 at 0xO0C Ox14
y = 0x3CD02700; 010
oxoc Y
0x08
// load the contents at 0x0C, 0x04
// add 3, and store sum at 0x20 0x00

x =y + 3;

14

C: Address and Pointer Primitives

address = index of a cell/location in memory
pointer = address represented as data

Expressions using addresses and pointers:
& address of the memory location representing
* contents at the memory address givenby

a.k.a. "dereference

Pointer types:
___* address of a memory location holdinga

& = address of
* = contents at

C: Address and Pointer Example

Declare a variable, p J

int* p;

\{that will hold the address of a memory location holding an int }

int x = 5;

Declare two variables, x and y, that hold ints,
int y = 2;

and store 5 and 2 in them, respectively.

Get the address of the memory location

P = &x3 representing x
...and storeitinp. Now, “ppoints to x.”

y =1+ *pj | stored inp

... and store it in the memory location representing y.]

Add 110 | the contents of memory at the addressf

18

C: Address and Pointer Example

& = address of
* = contents at

C: Arrays

Arrays are adjacent memory locations
storing the same type of data.

a is a name for the array’s base address,

. Declaration: int a[6]; : t
C assignment: can be used as an immutable pointer.
Left-hand-side = right-hand-side; element type
: number of
location value A
int* p; // p: 0x04
int x = 5; // x: Ox14, store 5 at 0x14 0x24 Y Ox24
int y = 2; // y: 0x24, store 2 at 0x24 0x20 Ox20
P = &x; // store 0x14 at 0x04 OxiC Ox1c
// load the contents at 0x04 (0x14) 0x18 Ox18
0x14 X Ox14
// load the contents at 0x14 (0x5) ox10 0x10
// add 1 and store sum at 0x24 OXOC 0xOC
y =1+ *p; 0x08 0x08
// load the contents at 0x04 (0x14) 0x04 0x04
// store O0xFO0 (240) at 0x14 0x00 0x00
*p = 240;
Arrays are adjacent memory locations
C: Arravs storing the same type of data. C: Array A"ocaﬂon
[] y . ?
a is a name for the array’s base address,
Declaration: int a[6]; can be used as an immutable pointer. Basic Principle
Indexing: a[0] = 0xf0; Address of a[i] is base address a T A[N];
a[5] = a[0]; lus i times element size in bytes. '
- vt Array of length N with elements of type Tand name A
No bounds a[6] = OxBAD; Contiguous block of N*sizeof (T) bytes of memory
check: a[-1] = OxBAD; char string(12]; [T 11 1T 11T 1111 Use sizeof to determine
Pointers: int* p; 0x24] o proper size in C.
ival p = a; 0x20 3[5]
equivalent p = &a[0]; 0x1C int val[5];
*p = 0xA; Ox18 X x+4 x+8 x+12 x+16 x+20
Ox14
double al[3];
valeny 4 PL11 = 0xB; 0x10
equivalen *(p + 1) = 0xB; oxoc a[o0] X x+8 x+16 x+24
p=p+ 2; 0x08 char* p(3]; m
0x04 P (orchar *p[3];)
array indexing = address arithmetic 0x00 X x+4 x+8 x+12
Both are scaled by the size of the type. x86-64
*p = a[l] + 1; X X+8 x+16 x+24

32

C: Array Access

Basic Principle
T A[N];
Array of length N with elements of type Tand name A
Identifier A can be used as a pointer to array element 0: A has type T#*

int val([5]; 0 2 4 8 1
X x+4 x+8 x+12 x+16 x+20
Reference Type Value

val[4] int

val int *

val+1 int *

&val[2] int *

val[5] int

*(val+1) int

val +i int * 33

C: Null-terminated strings

C strings: arrays of ASCII characters ending with null character.

0x48 | Ox61| Ox72| Ox72| Ox79 | Ox20 | Ox50| Ox6F | Ox74 | 0x74 | Ox65| 0x72| Ox00

IHV vav lrl lrl !y' ' ' IPI Iol lt' Itl lel lrl !\OI

Does Endianness matter for strings?

int string length(char str[]) ({

C:*and []

C programmers often use * where you might expect []:
e.g., char*:
« pointer to a char
« pointer to the first char in a string of unknown length
int strcmp (char* a, char* b);
int string length(char* str) {

// Try with pointer arithmetic, but no array indexing.

Memory Layout

Addr Perm Contents Managed by Initialized
2N_1 A
Stackl RW Procedure context Compiler Run time
? v
I Dynamic Programmer,
Heap RW data structures malloc/free, Run time
new/GC
. Global variables/ Compiler/
Statics static data structures Assembler/Linker Sl
. . . Compiler/
Literals R String literals Assembler/Linker Startup
Text X Instructions el Startup

Assembler/Linker

C: Dynamic memory allocation in the heap

Heap:
— —
Allocated block Free block

Managed by memory allocator:

pointer to newly allocated block
of at least that size number of contiguous bytes required

¥ ¥

void* malloc(size t size);
/ pointer to allocated block to free

void free (void* ptr);

C: standard memory allocator

#include <stdlib.h> // include C standard library

void* malloc(size_t size)
Allocates a memory block of at least size bytes and returns its address.
If error (no space), returns NULL.
Rules:
Check for error result.

Cast result to relevant pointer type.
Use sizeof(...) to determine size.

void free (void* p)
Deallocates the block at p, making its space available for new allocations.
p must be amalloc result that has not yet been freed.

Rules:
p must be amalloc result that has not yet been freed.
Do not use *p after freeing.

42 43

C: Dynamic array allocation C: Arrays of pointers to arrays of ...
#define ZIP LENGTH 5
int* zip = (int*)malloc(sizeof (int)*ZIP LENGTH) ; int** zips = (int**)malloc(sizeof (int¥*)*3);
if (zip == NULL) { // if error occurred

perror ("malloc"); // print error message zips[0] = (int*)malloc(sizeof (int) *5);

exit (0) ; // end the program
} int* zip0 = zips[0];

zip | 0x7fedd2400dcO | Ox7fff58bdd938 zip0[0] = O;

zip[0] = O; zips[0] [1] = 2;
zipl) - 2] ortecsoue xips (0] (2] = 4
zipl[2] = 4; 7] ox7fedd2400dcs zips[0] [3] = 8;
zip[3] = 8; 2 | ox7fedd2400dca zips[0] [4] = 1;
zip[4] = 1; \ 0 0x7fedd2400dc0/
printf("zip is"); zips E\'
for (int i = 0; i < ZIP LENGTH; i++) { I n I 5T 55

printf (" %$d", zipl[il):; — —
}
printf ("\n");

—1 0 2 4 8 1|
free(zip) ; 21P +0 +4 +8 +12 +16 +20 0 1 21401811]
44 46

C: Memory-Related Perils and Pitfalls

Terrible things to do with pointers, part 1.

Dereferencing bad pointers

See later exercises for:
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables

Freeing blocks multiple times
Referencing freed blocks

49

C: scanf reads formatted input

int val; <[

scanf (“%d4d”,

Declared, but not initialized
- holds anything.

&val) ;

T —

Read one int
from input.

Store it in memory
at this address.

where the contents of val is stored:

vall| BA D4 FA

CE

OX7FFFFFFFFFFFFF3C
OX7FFFFFFFFFFFFF38
OX7FFFFFFFFFFFFF34

} i.e., store it in memory at the address

store into memory at OxFFFFFF38.

50

C: classic bug using scanf

int wval; <ii

- holds anything.

Declared, but not initialized}

scanf (“%d”,

val) ;
—

Read one int
from input.

Store it in memory
at this address.

1

val| BA D4 FA CE

CA FE 12 34

OX7FFFFFFFFFFFFF3C
Ox7FFFFFFFFFFFFF38
OX7FFFFFFFFFFFFF34

0xO00000000BADA4FACE

i.e., store it in memory at the address
given by the contents of val:
store into memory at OxBAD4FACE.

Best case: segmentation fault,
or bus error, crash.

Bad case: silently corrupt data

stored at address OxBAD4FACE,

and val still holds OxBAD4FACE.

Worst case: arbitrary corruption 51

C: memory error messages

OKAY, HUMAN. YOU KNOW WHEN YOURE [AND SUDDENLY YOU
HUK? 3 FALLING ASLEER AND | MISSTER, STUMBLE,
1UR: YOU IMAGINE YOURSELF | AND JOLT AWAKE?

BEFORE YoU WALKING OR YEAH!
JHT (OMPILE, M SOMETHING, il ﬁ
LISTEN Up % ?

http://xkcd.com/371/

11: segmentation fault ("segfault"”, SIGSEGV)
accessing address outside legal area of memory

10: bus error

WELL, THATS WHAT A
SEGFAULT FEELS UKE.

3
DOUBLE - CHECK YOUR
DAMN POINTERYS, OKAY?

 Sul

accessing misaligned or other problematic address

More to come on debugging!

