
-- 1 --

Basic Electronics and Digital Logic
Computer Science 240

Laboratory 1

• Administrivia

• Lab Environment

• Basic Electronics (Ohm’s law, transistors, logic gates)

• Sum-of-Products and Equivalence

• Integrated Circuits

• Protoboard (for building physical circuits)

• LogicWorks (for simulating circuits)

-- 2 --

Lab Environment
• All lab exercises and reports will be Google Docs, and should be

shared with lab partner and the instructor.

• You should only use the machine in the seats specified for use

(distanced 6 feet apart) during lab, which are bootable to either

Windows or to Linux.

• To log in to a machine booted to Windows, use your Wellesley

network username and password.

• At the beginning and end of lab, clean your hands with the antiseptic

wipes. Wear gloves during lab.

• For the first four labs, you will be using a protoboard to build some

physical circuits.

• When you are working with a partner, only one of the partners will

build the circuit and touch the devices and wires (the other partner

will sit across the table and be able to see the board and results of the

experiments).

• Each person working on the physical circuits will have their own set

of wires that will not be shared between lab sections.

• Keyboards and protoboards will be cleaned between lab sections.

• We will switch partners each lab and make sure that everyone has a

chance to build some circuits.

-- 3 --

Basic Concepts of Electricity

- Electricity = the movement of electrons in a material
- Materials tend to have a net negative or positive charge
- Difference of charge between two points = potential

difference/voltage (V, measured in Volts)
- When you connect two materials with a potential difference using a

conducting medium (such as a wire), the electrons will flow to try to
balance the charge

- Rate at which flow of electrons is called current I (measured in
Amps).

- The conducting material has an integral ease of conduction to the
flow of electrons called resistance R (measured in Ohms Ω)

Ohm's Law, V = IR.

-- 4 --

Open circuit = no current:

Short circuit = infinite current, since V/0 = infinite current:

Infinite current swiftly results in the destruction of the circuit!

The basis of electronic computers is that we can specify a voltage
measured in a circuit as either high (close to the voltage source) or low
(close to 0 volts, or ground).

Therefore, using electronic circuits, we can represent Boolean values (high
= true, low = false), and we can also represent numbers using the binary
number system, with high = 1 and low = 0.

-- 5 --

Basic Gates and Truth Tables

Truth tables specify the output for all the given input combinations of a
Boolean function. We represent a value of true with a 1 and false with a
0.

If a function has two inputs A and B (called literals), and the function is
true for some particular combination of the inputs (such as when A = 1
AND B=1), that can be represented by the minterm AB (A AND B: an
AND operation is implied by two inputs placed next to one another).

 AB is only true when A = 1 AND B = 1.

For an input combination where one of the inputs is false (such as when A
= 1 and B = 0), we use the inverse of B in the minterm, AB’ (the ‘ means
NOT B). B’ is true only when B = 0.

 So, AB’ means A AND NOT B, and is only true when A = 1 and B = 0.

An OR operation is expressed by the + operator (such as A + B, meaning
A OR B).

There are several basic logic functions which are fundamental to our study
of digital electronics. They include (with given truth tables and gate
symbols for each):

-- 6 --

NOT NAND NOR AND OR
F = A’ F = (AB)’ F = (A+B)’ F = AB F = A + B

Although NOT, AND, and OR are the only functions needed for
expressing sum-of-products, it turns out that NAND (NOT AND, the
opposite of AND) and NOR (NOT OR, the opposite of OR) are also very
useful.

In addition, the Exclusive-OR function (XOR) is also considered a basic
logic function, because it can be used for comparison of bits, which is
quite useful for many tasks, including addition!

XOR
F = AB’ + A’B

A B F
0 0 0
0 1 1
1 0 1
1 1 0

-- 7 --

Sum-of-Products
Boolean functions be expressed in a sum-of-products form, which uses
AND, OR, and NOT basic functions. For example, given the truth table
for the OR function F = A + B:

F is true if:

A = 0 AND B=1 (A’B)
 -OR-
A = 1 AND B= 0 (AB’)
 -OR-
A = 1 AND B=1 (AB)

A’B + AB’ + AB (this is a more complicated expression than

 A + B, which is simplified from the
sum-of-products form)

Since a Boolean function can be expressed using only NOT, AND, and
OR basic functions using sum-of-products, if we had an electronic circuit
which could produce these basic functions (assuming a high voltage
measurement can represent true and a low voltage measurement can
represent false), that means that we can build a circuit for any Boolean
function.

-- 8 --

Transistors

A key to the development of modern computers was the invention of
devices that can act like a switch (can be turned on or off). Although the
early devices were large (such as vacuum tubes), and used a variety of
technologies, eventually transistors, miniature electric switches, were
developed.

Transistors can be used to produce the basic logic functions:

NOT – 1 transistor

NAND – 2 transistors

AND – 3 transistors

The AND gate uses 3 transistors and is basically a NOT NAND (it sends
the output of a NAND through another transistor acting as a NOT gate to
complement the result):

-- 9 --

Similarly, these are the transistor circuits for a NOR and OR gate:

NOR – 2 transistors

 OR – 3 transistors

Equivalence

Two functions which produce the same truth table are considered
equivalent.

For example, the functions F and Q can be shown to be equivalent:

F = A’B’ + A’B Q = A’ + A’B + A’B’:

A B A’B’ A’B A’B’ + A’B A B A’ A’B A’ B’ A’+A’B+A’B’
0 0 1 0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 1 0 0 1
1 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0

-- 10 --

When there is an equivalent function/circuit that uses fewer gates,
transistors, or chips, it is preferable to use that circuit in a design.

Equivalence can also be proven through use of Boolean algebra, which has
a set of laws or identities:

-- 11 --

To prove equivalence using the Boolean laws, transform one of the
functions using the Boolean laws until both functions have the same
expression.

For example, given the previous equivalent functions:

F = A’B’ + A’B Q = A’ + A’B + A’B’
 A’+A’B = A’B (absorption)
 A’B + A’B’ = A’B’ = A’B (commutativity)

Universal Gates

As we have seen using sum-of-products form, any Boolean function can

be constructed using only NOT, AND, and OR gates

But any function can also be produced using only NAND gates or only
NOR gates. For that reason, NAND and NOR are called universal gates.

One of the identities of Boolean algebra, DeMorgan’s Law, states how to
make an AND using a NOR (and vice-versa):

AB = (A' + B')' (AND from NOR)
A + B = (A'B')' (OR from NAND)

-- 12 --

NOT from a NOR (just tie inputs together)

OR from a NOR (just NOT the NOR)

To implement a function using only NOR gates:

- apply DeMorgan's Law to each AND in the expression until all
ANDs are converted to NORs

- use a NOR gate for any NOT gates, as well.
- remove any redundant gates (NOT NOT, may remove both)

Implementing the circuit using only NAND gates is similar.

-- 13 --

Integrated Circuits
Integrated circuits (chips) contain transistors which perform a specific
function.

The pinout (found in a TTL Data Book or online) shows the physical
layout of the pins and the purpose of the device:

Pins are numbered,
starting with “1” at the
top left corner and
incremented counter-
clockwise around the
device.

 Top left pin is pin 1,
always to left of notch in
chip, is often marked
with a dot

Bottom left pin is often
connected to ground (0V)

Top right pin is often
connected to Vcc
(+5V)

The chip will not
work if it is not
connected to power
and ground!

-- 14 --

Protoboard for building circuits

A protoboard is a tool to create prototype circuits. It contains a built-in
power supply, switches to supply inputs to circuits, Logic Indicators to
display outputs of circuits, and an array of holes/tie points in which
components and wires can easily be inserted to connect circuits:

-- 15 --

Transistor circuit for a NOT gate

-- 16 --

Circuit Simulation/LogicWorks

