Computer Science 240 Combinational Logic Assignment for Lab 3

1. Assume you have 3 inputs, **S, A1** and **A0**, and an output **Q**.

When
$$S = 0$$
, $Q = A0$
When $S = 1$, $Q = A1$

Give the truth table for Q:

$\frac{\mathbf{S}}{0}$	A1	A0	Q
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Write a function for \mathbf{Q} , and simplify to a minimum number of gates:

Draw a circuit that produces **Q**:

S stands for "Select". Knowing this, describe in English what this circuit does:

2.	Assume	you have 2 in	puts, A1 an	nd A0, and $4 o$	utputs/functions,	Q0, Q1	, Q2 , and Q3
----	--------	---------------	--------------------	------------------	-------------------	--------	-----------------------------

Q0 is only true when $\mathbf{A1A0} = 00$

Q1 is only true when $\mathbf{A1A0} = 01$

 $\mathbf{Q2}$ is only true when $\mathbf{A1A0} = 10$

Q3 is only true when $\mathbf{A1A0} = 11$

Give the truth table:

A1	$\mathbf{A0}$	Q0	Q1	Q2	Q3
0	0				
0	1				
1	0				
1	1				

Write a function for each of Q0, Q1, Q2, and Q3:

Q0 =

Q1 =

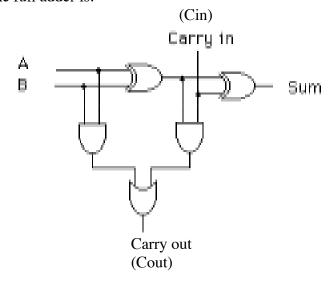
Q2 =

Q3 =

Draw a circuit that produces each of the functions from a single set of inputs A1 and A0:

Each input combination of A1A0 represents a decimal number. How is this related to the outputs?

3. Complete the truth table for two functions, Sum and CarryOut, which represent the result when adding two binary digits A and B:


A	В	CarryOut	Sum
0	0		
0	1		
1	0		
1	1		

Draw a circuit which produces Sum and CarryOut from inputs A and B (this circuit is know as a *half adder*). You should use exactly one AND gate and one XOR (exclusive or) gate.

Give the truth table for a *full adder* (which incorporates a carry-in bit to the sum of **A** and **B**):

A	В	CarryIn	CarryOut	Sum
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

4. A circuit for the full adder is:

Circle the two half adders:

Explain what each half adder is doing, in relation to adding the three bits A, B, and Cin:

Explain what the OR gate is doing to produce the **Cout**: