CS 240 Lab 3 Combinational Circuits

- Review of Two's Complement and Overflow
- Multiplexer/Demultiplexer
- Decoder/Encoder

Two's Complement and Overflow

Given n bits, the range of binary values which can be represented using

Unsigned representation: $0 \rightarrow 2^{n} - 1$

Signed representation: $-2^{n-1} -> 2^{n-1} -1$, MSB is used for sign

Two's Complement (signed representation):

Most significant /leftmost bit (0/positive, 1/negative)

Example: given a fixed number of 4 bits:

1000₂ is negative.

 0111_2 is positive.

Overflow

Given a fixed number of n available bits:

Overflow occurs if a value cannot fit in n bits.

Example: given 4 bits:

The largest negative value we can represent is -8_{10} (1000₂)

The largest positive value we can represent is $+7_{10}$ (0111₂)

Overflow in Addition

When adding two numbers with the same sign which each can be represented with n bits, the result may cause an overflow (not fit in n bits).

An overflow occurs when adding if:

- Two positive numbers added together yield a negative result, or
- Two negative numbers added together yield a positive result, or
- The Cin and Cout bits to the most significant pair of bits being added are not the same.

An overflow cannot result if a positive and negative number are added.

Example: given 4 bits: $0111_2 \\ + 0001_2 \\ 1000_2 \quad \text{overflow} \qquad \text{NOTE: there is not a carry-out!}$

In two's complement representation, a carry-out does not indicate an overflow, as it does in unsigned representation.

Example: given 4 bits, $1001_2 (-7_{10}) \\ + 1111_2 (-1_{10}) \\ 1 1000_2 (-8_{10})$ no overflow, even though there is a carry-out

Demultiplexer

Opposite of multiplexer

Single input data line

Input through to a single one of the 2ⁿ output lines

Output line is determined by the n select inputs

S1 S0 I Y3 Y2 Y1 Y0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Encoder

Opposite of decoder

2ⁿ inputs - only 1 of the inputs can be active at a time

Input selected specifies a decimal number which corresponds to the number of the input (3, 2, 1, or 0)

n outputs represent the corresponding binary representation of the decimal value specified by the input

Y .	3 Y	2 Y	1 Y0	A1 A0
0	0	0	1	
0	0	1	0	
0	1	0	0	
1	0	0	0	