CS 240 Lab 3
 Combinational Circuits

- Review of Two's Complement and Overflow
- Multiplexer/Demultiplexer
- Decoder/Encoder

Two's Complement and Overflow

Given n bits, the range of binary values which can be represented using
Unsigned representation: $0 \rightarrow 2^{n}-1$
Signed representation: $-2^{\mathrm{n}-1}->2^{\mathrm{n}-1}-1, \quad$ MSB is used for sign

Two's Complement (signed representation):

Most significant /leftmost bit (0/positive, $1 /$ negative)

Example: given a fixed number of 4 bits:
1000_{2} is negative.
0111_{2} is positive.

Overflow

Given a fixed number of n available bits:
Overflow occurs if a value cannot fit in n bits.

Example: given 4 bits:
The largest negative value we can represent is $-8_{10}\left(1000_{2}\right)$
The largest positive value we can represent is $+7_{10}\left(0111_{2}\right)$

Overflow in Addition

When adding two numbers with the same sign which each can be represented with n bits, the result may cause an overflow (not fit in n bits).

An overflow occurs when adding if:

- Two positive numbers added together yield a negative result, or
- Two negative numbers added together yield a positive result, or
- The Cin and Cout bits to the most significant pair of bits being added are not the same.

An overflow cannot result if a positive and negative number are added.
Example: given 4 bits:
0111_{2}
$\frac{+0001_{2}}{1000_{2}}$ overflow
NOTE: there is not a carry-out!
In two's complement representation, a carry-out does not indicate an overflow, as it does in unsigned representation.

Example: given 4 bits,
$1001_{2}\left(-7_{10}\right)$
$+1111_{2}\left(-1_{10}\right)$
$11000_{2}\left(-8_{10}\right)$ no overflow, even though there is a carry-out

Demultiplexer

Opposite of multiplexer
Single input data line
Input through to a single one of the 2^{n} output lines
Output line is determined by the n select inputs

S1 S0 I Y3 Y2 Y1 Y0
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 1$
$0 \quad 1 \quad 0$
$0 \quad 11$
100
101
110
111

Encoder

Opposite of decoder
2^{n} inputs - only 1 of the inputs can be active at a time
Input selected specifies a decimal number which corresponds to the number of the input ($3,2,1$, or 0)
n outputs represent the corresponding binary representation of the decimal value specified by the input

| $\mathbf{Y 3} \mathbf{~ Y 2 ~ Y 1 ~ Y 0 ~}$ | | | | A1 A0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | |
| 0 | 0 | 1 | 0 | |
| 0 | 1 | 0 | 0 | |
| 1 | 0 | 0 | 0 | |

