Computer Science 240

Adders and ALU
Assignment for Lab 4
Submit a hardcopy with your answers at the beginning of lab
If you did the first 2 problems on last week's lab assignment, do not do them again (only turn in problem 3). If you did NOT do last week's lab assignment, please complete all 3 problems.

1. Complete the truth table for two functions, Sum and CarryOut, which represent the result when adding two binary digits \mathbf{A} and \mathbf{B} :

A	B	CarryOut	Sum
0	0		
0	1		
1	0		
1	1		

Draw a circuit which produces Sum and CarryOut from inputs A and B (this circuit is know as a half adder). You should use exactly one AND gate and one XOR (exclusive or) gate.

Give the truth table for a full adder (which incorporates a carry-in bit to the sum of \mathbf{A} and \mathbf{B}):

A	B	CarryIn	CarryOut	Sum
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

2. A circuit for the full adder is:

- Circle the two half adders.
- Explain what each half adder is doing, in relation to adding the three bits A, B, and Carry in:
- Explain what the OR gate is doing to produce the Carry out:

3. Give the truth table for the following circuit (the box with + is a 1-bit adder):

assume Operation is a 2-bit value Op1 Op0
Op1 Op0 Result (express in terms of A and B)
$0 \quad 0$
$0 \quad 1$
10
11

Describe the general purpose of this circuit:

