CS 240 Lab 4
 Adders and ALU

Half-Adder - adds two one-bit values

| A | B | Sum | Cout |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | | |
| 0 | 1 | | |
| 1 | 0 | | |
| 1 | 1 | | |

Full Adder - incorporates a carry-in

Cout

A	B	Cin	Sum	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	Sum $=A \oplus B \oplus$ Cin
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

n-bit adder $=\mathrm{n}$ 1-bit adders

Carry-out of each adder = Carry-in of the adder for next two most significant bits being added Carry in_{0}

Carry out ${ }_{n-1}$

ALU

Want to be able to select whether the ALU will produce the bitwise AND, OR, and sum as a result.

add $(\mathrm{A}+\mathrm{B}+\mathrm{Cin})$,
AND (A AND B),
OR (A OR B),

Adding the ability to choose whether to invert A or B provides additional operations:
sub (invert $\mathbf{B}, \mathbf{C i n}=1, \mathbf{A}+\mathbf{B}+\mathbf{C i n}$)
NOR (invert a, invert b, a AND b)

invA invB	Cin	Op1		Result
00	N/A	0	0	A AND B
00	N/A	0	1	A OR B
00	0/1	1	0	A + B
01	1	1	0	A - B
1	N/A	0	0	A NOR

