CS 240 Lab 4 Adders and ALU

Full Adder - incorporates a carry-in

<u>A</u>	В	Cin	Sum	Cout	
0	0	0	0	0	$Sum = A \oplus B \oplus Cin$
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	Cout = $AB+(A \oplus B)Cin$
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

n-bit adder = n 1-bit adders

Carry-out of each adder = Carry-in of the adder for next two most significant bits being added Carry in₀

ALU

Want to be able to select whether the ALU will produce the bitwise AND, OR, and sum as a result.

add(A + B + Cin),AND(A AND B),OR(A OR B),

Adding the ability to choose whether to invert A or B provides additional operations:

sub (invert **B**, **Cin** = 1, **A** + **B** + **Cin**)

NOR (invert a, invert b, a AND b)

inv	<u>A invB</u>	Cin	Op1	Op0	Result
0	0	N/A	0	0	A AND B
0	0	N/A	0	1	A OR B
0	0	0/1	1	0	A + B
0	1	1	1	0	A - B
1	1	N/A	0	0	A NOR B

n-bit ALU

