CS240 Laboratory 5

 Sequential/Memory Circuits
Basic Memory Circuits

Latch Single-bit memory, level-triggered Flip-Flop Also single-bit, but edge-triggered

SR (Set Reset) Latch

What does unpredictable mean? Notice in a NOR gate, if either input $=1$ to a gate, its output $=0$ (1 is a deterministic input):

$$
\begin{array}{ccc}
\mathbf{A} & \mathbf{B} & (\mathbf{A}+\mathbf{B})^{\prime} \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}
$$

So, although you wouldn't usually try to set and reset at the same time (it doesn't make sense), if you did, Q and Q ' will both be 0 (which is not unpredictable).

However, when you go back to the remember state ($\mathrm{S}=\mathrm{R}=0$), Q and Q^{\prime} will not stay at 0 . The circuit passes through one of either the set or reset state on its way back to the remember state, and Q and Q ' change to the complement of one another.

Since the final state depends on which transitional state was sensed on the way back to remember, you cannot predict whether the final state of Q will be 1 or 0 .

Clocked SR Latch

Incorporates a clock input/level-sensitive

Output Q can change in response to S and R whenever the $C K$ input is asserted.

How does Q respond to the following inputs?

D Latch

Avoids unpredictable state, because a single input D determines the next state of the circuit.

D	Qnext
0	0
1	1

D Flip-Flop

Changes state on a clock transition (edge), rather than whenever the clock is asserted.

Internally, a flip-flop is made from 2 latches. The first latch is controlled by the clock, but the second latch is controlled by the inverse of the clock:

So, the input D will not be passed from the first latch to the second latch until the clock goes low.

Once the clock is low, a new value on D will not store into the first latch. Overall, the flip-flop can change value only exactly at the transition of the clock from high to low.

Output Q can change in response to S and R only on the positive edge of the clock.

Notice the difference between Q and the output for the earlier clocked latch example.

Circuits using Flip-flops

Register - n-bit memory, uses n flip-flops, and shared clock and clear inputs

Register File set of registers

- Write is the write control signal.
- Write register is the number of a register to be written with a new value
- Read register 1 and 2 indicate which 2 registers can be read at data ports Read data 1 and Read data 2 at any given time
- clear and clock (CLR and CLK) are shared by all the 16 registers.

- 2 sets of 4 x 1 multiplexers select which 2 registers are currently being output at the two read ports.
- A decoder uses the write register number to select which of the 4 registers will receive a new value on a write.

RAM memory contains multiple flip-flops, organized into nbit words, where each word can be accessed through use of an address:

Set Load $=0$ (enables tri-state buffers so that address lines are connected to memory)

Set Addressin to location in memory
Set Datain to value to be stored at specified address Set Write $=0$ (data is stored in memory), then back to 1

Instruction Fetch

1. The Instruction memory contains 256 8-bit values (bytes). Each byte has a unique 8-bit location, or address.
2. The Program Counter register ($\mathbf{P C}$) is initialized to address 0 by a reset.
3. Address 0 is always the address of the first instruction in the program, which is stored in the Instruction memory. Each instruction is 16 bits in length, so it takes 2 bytes to store an instruction.
4. Address 0 is input to Instruction Memory, and the instruction stored at address 0 is produced at data outputs
5. The value of the PC is also an input to the adder, which adds 2 to the address to calculate the address of the instruction in memory (since the instruction is 2 bytes long, you need to move to an address 2 bytes away to get to the address of the next instruction in memory).
6. The output of the adder is applied to the inputs of the PC , so that when the PC is clocked, it becomes the next address applied to the memory (and the next instruction stored in memory is then produced at the data outputs).
7. So, every time the PC is clocked, the next sequential instruction in memory is produced at the data outputs.
