
Laboratory 6 
Processor Datapath 

 
Description of  HW Instruction Set Architecture 
 
• 16 bit data bus 

 
• 8 bit address bus 

 
• 16 registers 

R0 = 0 (constant) 
R1 =1 (constant) 
R2-R15 general purpose 

 



Fetch Instruction from Memory 
 
• PC register holds address of currently executing instruction 
• Programs are assumed to start at address 0 
• PC initialized to 0 by a reset to begin execution 
• Next instruction located at current PC + 2 

 
 

 
 
 
 
 
 
 
 
 
 
 
 



Branch Address 
 
Programs do not always execute in sequential order.   
 
When the BEQ instruction is executed, the next instruction to be executed is either: 
 

  PC = PC + 2    
or    

PC = PC + 2 + (2*offset)  
 
  

  
BEQ Rs,Rt,offset 
 

• The offset  = number of instructions away from the next value of the  PC to branch 
to, so must be multiplied by 2.  

• Since offset  is 4 bits,  it must be sign-extended to 8 bits to be added to the PC.  
 
A  MUX  selects the next value of the PC.   The value of the Branch and Zero bits are used to 
determine which is used: 
 

• The Branch control line =  1 if  a BEQ instruction is being executed.   
 

• The Zero bit from the ALU is  used to check whether Rs = Rt:   it is 1 if Rs – Rt = 
0 (meaning they’re equal).  If Branch = 1 and Zero = 1, then the next value of the 
PC will be the branch address ; otherwise, it will simply be PC + 2 



Datapath  

 
R-type instructions ADD,SUB,AND,OR      have format:  opcode Rs Rt Rd 

– read Rs and Rt from register file 
– perform an ALU operation on the contents of the registers 
– write the result to register Rd in register file 

 
Memory Access instructions LW,SW          have format:  opcode Rt offset(Rs)  

– offset is in the position in the instruction where Rd is for R-type instructions 
– memory address = Rs + sign-extended 4-bit offset 
– if SW, the value to be stored to memory is from Rt 
– if LW, Rt is loaded with the value read from memory  
 

Register written to in regfile  is specified by Write Addr, which is either  Rd or Rt  (chosen by 
MUX which is controlled by MemLoad ) 
  
ALU  operates on  Rs and Rt, or  on Rs and the sign-extended offset  
 
 - Input A of the ALU is always Rs  
 - Input B of the ALU is Rt or the offset (chosen by a MUX controlled  by MemLoad) 
  



Control Unit 
 
ALU can perform 4 possible operations: 
 
ALUop ALU function 
0000  a AND b 
0001  a OR b 
0010  a + b (add) 
0110  a - b 
 
The Control Unit select the proper ALU operation for each instruction, along with the proper 
control signals, based on the opcode: 
 
Instruction Opcode ALUop RegWrite MemLoad MemStore Branch Jump 
LW  0000  0010  1  1  0  0  0 
SW  0001  0010  0  1  1  0  0 
ADD  0010  0010  1  0  0  0  0 
SUB  0011  0110  1  0  0  0  0 
AND  0100  0000  1  0  0  0  0  
OR  0101  0001  1  0  0  0  0 
BEQ  0111  0110  0  0  0  1  0 
JMP  1000  don’t care 0  0  0  0  1 
 
 
Can use decoders or simple logic to produce these signals. 
 
  
 
 
 
 
 
 

 
 



Full Implementation 
 

 
 
Procedure to Load/Execute a New Program 
 

1. Disconnect the address bus of the Instruction Memory from the CPU  
2. Set LOAD = 0 
 
3. Set address and data switches for instruction 
4. Set WR = 0, then back to 1 
5. Repeat steps 3 and 4 until all instructions are loaded to memory 

 
6. Set LOAD = 1 
7. Reconnect address bus to CPU 
 
8. Set Reset = 1, then back to 0 
9. Set CLK = 1, then back to 0, for each instruction. 
 
 
 



Address  Instruction    _ Rs  Rt  Rd/offset Purpose 
0:    ADD  R1 R1 R2  ; R2 = 2 
2:    ADD  R2 R2 R3  ; R3 = 4 
4:    ADD  R3 R3 R3  ; R3 = 8 
6:    SW  R0 R3  0  ; data address 0: 8 
8:    SW  R0 R2 2  ; data address 2: 2 
A:(LOOP)   LW  R0 R5 0  ; R5 <- 8 from address 0 
C:    LW  R0 R4 2  ; R4 <- 2 from address 2 
E:    SUB  R5 R4 R5  ;R5<-  8 – 2 = 6 
10:    SW  R0 R5 4  ;data address 4:  6  
12:    LW  R0 R15 4  ;R15 <- contents of address 4 
14:    OR  R15 R15 R15 ; displays  R15 at ALU result 
16:    BEQ    R2 R15 LOOP ; repeat the starting at label loop  
18:    J           END   ; jump to end of program 
… 
1E:  (END):  

 


