Laboratory 6

Processor Datapath

Description of HW Instruction Set Architecture

e 16 bit data bus
e 8§ bit address bus

o 16 registers
RO = 0 (constant)
R1 =1 (constant)
R2-R15 general purpose

HW HS@[Instructions

MSB

16-bit Encoding LsB

[S NN

ADD Rs, Rt, Rd R[d] € R[s] + R[t] 0010
SUB Rs, Rt, Rd R[d] € R[s] - R[t] 0011
AND Rs, Rt, Rd R[d] € R[s] & R[t] 0100
OR Rs, Rt, Rd R[d] € R[s] | R[t] 0101
LW Rt, offset(Rs) R[t] € MI[R[s] + offset] 0000
SW Rt, offset(Rs) MIR[s] + offset] € R|[t] 0001
BEQ Rs, Rt, offset prlz:[s(]j:cRiti;;s:*z 0111
JMP offset PC € offset*2 1000

(R = register file, M = memory)

S

o f f s

t

Q Q Q Q

A Simple Processor

Fetch Instruction from Memory

PC register holds address of currently executing instruction
Programs are assumed to start at address 0
PC initialized to O by a reset to begin execution

o
o
o
e Next instruction located at current PC + 2

Fetch instruction from
memory.
YAdd Increment program counter
, (PC) to point to the next
instruction.
Instruction
Memory

R o Read -

| PC Address)
Instruction

Branch Address

Programs do not always execute in sequential order.

When the BEQ instruction is executed, the next instruction to be executed is either:

PC=PC+2
or
PC =PC + 2 + (2*offset)
8 N —
7 o N\ =0
8 N \8
N Add | a2 e MUX,
_ 8
2 ™ .) Add !
8 L 8 Lr
' Read | o Shin . R
—pe 7% address | left 1 \..,'
Instruction | 4
o sen |8 ’ ’
TT Instruction offset |*ond Branch Zero
CLK RESET memory |
BEQ Rs,Rt,offset

e The offset = number of instructions away from the next value of the PC to branch
to, so must be multiplied by 2.
e Since offset is 4 bits, it must be sign-extended to 8 bits to be added to the PC.

A MUX selects the next value of the PC. The value of the Branch and Zero bits are used to
determine which is used:

e The Branch control line = 1 if a BEQ instruction is being executed.
e The Zero bit from the ALU is used to check whether Rs = Rt: itis 1 if Rs — Rt=

0 (meaning they’re equal). If Branch = 1 and Zero = 1, then the next value of the
PC will be the branch address ; otherwise, it will simply be PC + 2

Datapath

¢
/ \ Mem I
4 | Control ")
Opcode[X | Unit |
. Reg Write ALU Op
4 Write Enable Mem Store
k\\ RsA Read Addr 1 g \15 N _ g -
16| .4 ReadAddr2 Datal | 16 —| Address
+ Rt . :
Inst ol Register File >ALU Data Memory
4" o[Write Addr Read |16 =
Rd 16 Data 2 0 Write Read
\\ Write Data ;[,__, Data Data
Rd | A [Sign 1 16 ‘ v ‘L
(offset) \ . _extend) \ 0 1 [«——

R-type instructions ADD,SUB,AND,OR
— read Rs and Rt from register file

— perform an ALU operation on the contents of the registers

— write the result to register Rd in register file

Memory Access instructions LW . SW

if SW, the value to be stored to memory is from Rt
if LW, Rt is loaded with the value read from memory

AStmpte-frocessor 17

have format: opcode Rs Rt Rd

have format: opcode Rt offset(Rs)
offset is in the position in the instruction where Rd is for R-type instructions
memory address = Rs + sign-extended 4-bit offset

Register written to in regfile is specified by Write Addr, which is either Rd or Rt (chosen by
MUX which is controlled by MemLoad)

ALU operates on Rs and Rt, or on Rs and the sign-extended offset

- Input A of the ALU is always Rs
- Input B of the ALU is Rt or the offset (chosen by a MUX controlled by MemlLoad)

Control Unit

ALU can perform 4 possible operations:

ALUop ALU function

0000 a AND b
0001 aORD
0010 a+ b (add)
0110 a-b

The Control Unit select the proper ALU operation for each instruction, along with the proper
control signals, based on the opcode:

Instruction Opcode ALUop RegWrite MemlLoad MemStore Branch Jump
LW 0000 0010 1 1 0 0 0
SW 0001 0010 0 1 1 0 0
ADD 0010 0010 1 0 0 0 0
SUB 0011 0110 1 0 0 0 0
AND 0100 0000 1 0 0 0 0
OR 0101 0001 1 0 0 0 0
BEQ 0111 0110 0 0 0 1 0
JMP 1000 don’t care 0 0 0 0 1

Can use decoders or simple logic to produce these signals.

Full Implementation

LosD L
Pazd Ciatm |
ACIE
wn L e]| [F1.1 [F1.] ['].
oI
"
o poig | D8 ORI BEXOOZSRESSATANTES
Qi Daia L it T Ay
111} il) D13 o
va o Dol T -
o DD A il Pt
on Deer = % L
o o — o AL
oo oo o e AU
oL Do D AU
o 5 B z s
oy | o3) D 0% A
"R = A B0 B e
o Ak |os |od P pon L e
COET D+ | o4 =4 Al P
i He—im |] &l L] A
BreTi—im g A o~ A
AL 3 T # 4 M
M) EI e me i} " R E A
N 1
1l y i a nTAs—o —
i A e R
EESET L= 3 ol 0T T e o O O
i‘ %
. " "
cwe | fo— %ﬂ o]] Lol] 1'| |
)
—] 3 Fad Data 2
= T]

Procedure to Load/Execute a New Program

1. Disconnect the address bus of the Instruction Memory from the CPU

2. Set LOAD =0

o

Set LOAD =1

7. Reconnect address bus to CPU

oo

Set Reset = 1, then back to O

Set address and data switches for instruction
. Set WR =0, then back to 1
. Repeat steps 3 and 4 until all instructions are loaded to memory

9. Set CLK =1, then back to 0, for each instruction.

Address Instruction Rs Rt Rd/offset Purpose

0: ADD R1 R1R2 ;R2=2

2: ADD R2 R2 R3 ;R3=4

4. ADD R3 R3 R3 ;R3=8

6: SW ROR3 0 ; data address 0: 8

8: SW ROR22 ; data address 2: 2
A:(LOOP) LW RORS50 ; RS <- 8 from address 0

C: LW ROR4 2 ; R4 <- 2 from address 2

E: SUB R5 R4 R5 ;R5<- 8—-2=6

10: SW ROR5 4 ;data address 4: 6

12: LW ROR154 ;R15 <- contents of address 4
14: OR R15 RI15R15 ; displays R15 at ALU result
16: BEQ R2 R15 LOOP ; repeat the starting at label loop
18: J END ; jump to end of program

lE (END):

