Floating Point Representation

Fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding

Lessons for programmers

Many more details we will skip (it’s a 58-page standard...)
See CSAPP 2.4 for more detail.

https://cs.wellesley.edu/~cs240/s20/
Fractional Binary Numbers

\[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 and 3/4</td>
<td></td>
</tr>
<tr>
<td>2 and 7/8</td>
<td></td>
</tr>
<tr>
<td>47/64</td>
<td></td>
</tr>
</tbody>
</table>

Observations
- Shift left =
- Shift right =
- Numbers of the form $0.\overline{111111}_2$ are...

Limitations:
- Exact representation possible when?

$$1/3 = 0.333333..._{10} = 0.$$
Fixed-Point Representation

Implied binary point.

\[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [.] \ b_2 \ b_1 \ b_0 \]

\[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \ [.] \]

Range: difference between largest and smallest representable numbers

Precision: smallest difference between any two representable numbers

Fixed point = fixed range, fixed precision
IEEE Floating Point Standard 754
IEEE = Institute of Electrical and Electronics Engineers

Numerical form:

\[V_{10} = (-1)^s \times M \times 2^E \]

Sign bit \(s \) determines whether number is negative or positive

Significand (mantissa) \(M \) usually a fractional value in range \([1.0,2.0)\)

Exponent \(E \) weights value by a \((-/+\) power of two

Analogous to scientific notation

Representation:

MSB \(s = \) sign bit \(s \)

\(\text{exp} \) field encodes \(E \) (but is \textit{not equal} to \(E \))

\(\text{frac} \) field encodes \(M \) (but is \textit{not equal} to \(M \))

Numerically well-behaved, but hard to make fast in hardware
Precisions

Single precision (**float**): 32 bits

Finite representation of infinite range...
Three kinds of values

\[V = (-1)^s \times M \times 2^E \]

1. **Normalized**: \(M = 1.xxxxxx... \)
 - As in scientific notation: \(0.011 \times 2^5 = 1.1 \times 2^3 \)
 - Representation advantage?

2. **Denormalized**, near zero: \(M = 0.xxxxxx... \), smallest \(E \)
 - Evenly space near zero.

3. **Special values**:
 - **0.0**: \(s = 0 \quad \text{exp} = 00...0 \quad \text{frac} = 00...0 \)
 - **+inf, -inf**: \(\text{exp} = 11...1 \quad \text{frac} = 00...0 \)
 - division by 0.0
 - **NaN** (“Not a Number”): \(\text{exp} = 11...1 \quad \text{frac} \neq 00...0 \)
 - \(\sqrt{-1} \), \(\infty - \infty \), \(\infty \times 0 \), etc.
Value distribution

-∞ - Normalized - Denormalized + Denormalized + Normalized +∞

NaN -0.0 +0.0 NaN

Floating Point
Normalized values, with `float` example

\[V = (-1)^s \times M \times 2^E \]

Value: `float f = 12345.0;`

\[
\begin{align*}
12345_{10} & = 110000000111001_2 \\
& = 1.1000000111001_2 \times 2^{13} \quad \text{(normalized form)}
\end{align*}
\]

Significand:
\[
\begin{align*}
M &= \underbrace{1.1000000111001}_2 \\
\text{frac} &= \underbrace{1000000111001000000000000}_2
\end{align*}
\]

Exponent: \(E = \exp - \text{Bias} \rightarrow \exp = E + \text{Bias} \)
\[
\begin{align*}
E &= 13 \\
\text{Bias} &= 127 = 2^7 - 1 = 2^{k-1} - 1 \quad \text{Splits exponents roughly -/+} \\
\exp &= 140 = 10001100_2
\end{align*}
\]

Result:
\[
\begin{array}{ccc}
0 & 10001100 & 1000000111001000000000000 \\
\text{s} & \text{exp} & \text{frac}
\end{array}
\]
Denormalized Values: near zero

"Near zero": \(\text{exp} = 000...0 \)

Exponent:

\[E = 1 + \text{exp} - \text{Bias} = 1 - \text{Bias} \quad \text{not:} \quad \text{exp} - \text{Bias} \]

Significand: leading zero

\[M = 0.\text{xxx}...x_2 \quad \frac{\text{frac}}{2} = \text{xxx}...x \]

Cases:

\[\text{exp} = 000...0, \frac{\text{frac}}{2} = 000...0 \quad 0.0, -0.0 \]

\[\text{exp} = 000...0, \frac{\text{frac}}{2} \neq 000...0 \]
Value distribution example

6-bit IEEE-like format

Bias = $2^{3-1} - 1 = 3$

Full Range

s=1, exp=101

$E = 5-3 = 2$

frac= 00, 01, 10, 11

M = 1.00, 1.01, 1.10, 1.11

s=0, exp=110

$E = 6-3 = 3$

Zoom in to 0

s=1, exp=010

$E = 2-3 = -1$

exp=000

$E = 1-3 = -2$

Denormalized = evenly spaced

s=0, exp=001

$E = 1-3 = -2$

same spacing

Floating Point
Try to represent 3.14, 6-bit example

6-bit IEEE-like format

Bias = $2^{3-1} - 1 = 3$

Value: 3.14

3.14 = 11.0010 0011 1101 0111 0000 1010 000...
= 1.1001 0001 1110 1011 1000 0101 000... 2×2^1 (normalized form)

Significand:

$M = 1.1001000111101011101100001010000...$
frac{2}{2}$

Exponent:

$E = 1$ Bias = 3 exp = 4 = 100$_2$

Result:

$0 \text{ 100 10} = 1.10_2 \times 2^1 = 3 \text{ next highest?}$
Floating Point Arithmetic*

\[V = (-1)^s \times M \times 2^E \]

1. Compute exact result.
2. Fix/Round, roughly:
 - Adjust \(M \) to fit in \([1.0, 2.0)\)...
 - If \(M \geq 2.0 \): shift \(M \) right, increment \(E \)
 - If \(M < 1.0 \): shift \(M \) left by \(k \), decrement \(E \) by \(k \)
 - Overflow to infinity if \(E \) is too wide for \(\text{exp} \)
 - Round* \(M \) if too wide for \(\text{frac} \).
 - Underflow if nearest representable value is 0.

... *complicated...
Lessons for programmers

\[V = (-1)^S \times M \times 2^E \]

float \neq \text{real number} \neq \text{double}

Rounding breaks associativity and other properties.

double a = ..., b = ...;

\times

if (a == b) ...

if (abs(a - b) < \text{epsilon}) ...