

CS 240 Spring 2020 Foundations of Computer Systems Ben Wood

Digital Logic

Gateway to computer science

transistors, gates, circuits, Boolean algebra

https://cs.wellesley.edu/~cs240/s20/

Digital data/computation = Boolean

Boolean value (**bit): 0 or 1** Boolean functions (AND, OR, NOT, ...)

Electronically:

bit = high voltage vs. low voltage

Digital Logic 1

Abstraction!

Boolean functions = logic gates, built from transistors

Digital Logic 3

Transistors (more in lab)

If Base voltage is high: Current may flow freely from *Collector* to *Emitter*.

If Base voltage is low: Current may not flow from *Collector* to *Emitter*.

		Т	ruth	table			
\mathbf{V}_{in}	Vout		in	out		in	out
low	high	=	0	1	=	F	Т
high	low		1	0		Т	F

Circuits

Connect inputs and outputs of gates with wires. Crossed wires touch *only if* there is a dot.

What is the output if A=1, B=0, C=1? What is the truth table of this circuit? What is an equivalent Boolean expression?

Identity law, inverse law

Translation

ex

Digital Logic 9

ex

Circuit derivation: *sum-of-products* form

ex

logical sum (OR) of products (AND)

of inputs or their complements (NOT)

Draw the truth table and design a sum-of-products circuit for a 4-input code detector to accept two codes (ABCD=1001, ABCD=1111) and reject all others. How are the truth table and the sum-of-products circuit related?

Voting machines

A majority circuit outputs 1 if and only if a majority of its inputs equal 1. Design a majority circuit for three inputs. Use a sum of products.

Α	В	С	Majority
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Triply redundant computers in spacecraft

Space program also hastened Integrated Circuits.
 Digital Logic 23

ex

Digital Logic 22

Mary Jackson

Computers

- Manual calculations
 powered all early US space missions.
- Facilitated transition to digital computers.

Katherine Johnson

• Supported Mercury, Apollo, Space Shuttle, ...

Dorothy Vaughn

- First black supervisor within NACA
- Early self-taught FORTRAN programmer for NASA move to digital computers.

Early pioneers in reliable computing

Katherine Johnson

- Calculated first US human space flight trajectories
- Mercury, Apollo 11, Space Shuttle, ...
- Reputation for accuracy in manual calculations, verified early code
- Called to verify results of code for launch calculations for first US human in orbit
- Backup calculations helped save Apollo 13
- Presidential Medal of Freedom 2015

Margaret Hamilton

- Led software team for Apollo 11 Guidance Computer, averted mission abort on first moon landing.
 Coined "software engineering",
- developed techniques for correctness and reliability.
- Presidential Medal of Freedom 2016

