

Digital Logic

Gateway to computer science

transistors, gates, circuits, Boolean algebra

Program, Application

Programming Language

Compiler/Interpreter

Operating System

Instruction Set Architecture

Microarchitecture

Digital Logic

Devices (transistors, etc.)

Solid-State Physics

Digital data/computation = Boolean

Boolean value (bit): 0 or 1

Boolean functions (AND, OR, NOT, ...)

Electronically:

bit = high voltage vs. low voltage

Abstraction!

Boolean functions = logic gates, built from transistors

Transistors (more in lab)

If Base voltage is high:

Current may flow freely from *Collector* to *Emitter*.

If Base voltage is low:

Current may not flow from *Collector* to *Emitter*.

Truth table							
	V _{out}		in	out		in	out
low high	high	=	0	1	=	F	Т
high	low		1	0		Т	F

Digital Logic Gates

Tiny electronic devices that compute basic Boolean functions.

NOT

Integrated Circuits (1950s -

Early (first?) transistor

Small integrated circuit

Chip

Five basic gates: define with truth tables

NOT		
0	1	
1	0	

NAND	0	1
0	1	1
1	1	0

NOR	0	1
0		
1		

OR	0	1
0		
1		

Boolean Algebra

for combinational logic

inputs =

variables

wires = expressions

gates = operators/functions

circuits = functions

AND = Boolean product

OR = Boolean sum

$$A \longrightarrow A$$

NOT = inverse or complement

wire = identity

0 0

1 1

Circuits

Connect inputs and outputs of gates with wires. Crossed wires touch *only if* there is a dot.

What is the output if A=1, B=0, C=1? What is the truth table of this circuit? What is an equivalent Boolean expression?

Translation

Connect gates to implement these functions. Check with truth tables.

Use a direct translation -- it is straightforward and bidirectional.

$$F = (A\overline{B} + C)D$$

$$Z = \overline{W} + (X + \overline{WY})$$

Identity law, inverse law

Commutativity, Associativity

Idempotent law, Null/Zero law

Note on notation: bubble = inverse/complement
$$A \longrightarrow A + B$$

$$B \longrightarrow A + B$$

DeMorgan's Law

(double bubble, toil and trouble, in Randy's words...)

One law, Absorption law

Write truth tables. Do they correspond to simpler circuits?

NAND is universal.

All Boolean functions can be implemented using only NANDs. Build NOT, AND, OR, NOR, using only NAND gates.

XOR: Exclusive OR

Output = 1 if exactly one input = 1.

Truth table:

Build from earlier gates:

Often used as a one-bit comparator.

Larger gates

Build a 4-input AND gate using any number of 2-input gates.

Circuit simplification

Is there a simpler circuit that performs the same function?

Start with an equivalent Boolean expression, then simplify with algebra.

$$F(A, B, C) =$$

Check the answer with a truth table.

Circuit derivation: code detectors

AND gate + NOT gates = code detector, recognizes exactly one input code.

Design a 4-input code detector to output 1 if ABCD = 1001, and 0 otherwise.

- Α _____
- В ———
- C —
- D —

Design a 4-input code detector to accept two codes (ABCD=1001, ABCD=1111) and reject all others. (accept = 1, reject = 0)

Circuit derivation: sum-of-products form

logical sum (OR)
of products (AND)
of inputs or their complements (NOT)

Draw the truth table and design a sum-of-products circuit for a 4-input code detector to accept two codes (ABCD=1001, ABCD=1111) and reject all others. How are the truth table and the sum-of-products circuit related?

Voting machines

A majority circuit outputs 1 if and only if a majority of its inputs equal 1. Design a majority circuit for three inputs. Use a sum of products.

Α	В	С	Majority
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Triply redundant computers in spacecraft

Space program also hastened Integrated Circuits.

Computers

- Manual calculations
- powered all early US space missions.
- Facilitated transition to digital computers.

Mary Jackson

Katherine Johnson

• Supported Mercury, Apollo, Space Shuttle, ...

Dorothy Vaughn

- First black supervisor within NACA
- Early self-taught FORTRAN programmer for NASA move to digital computers.

Early pioneers in reliable computing

Katherine Johnson

- Calculated first US human space flight trajectories
- Mercury, Apollo 11, Space Shuttle, ...
- Reputation for accuracy in manual calculations, verified early code
- Called to verify results of code for launch calculations for first US human in orbit
- Backup calculations helped save Apollo 13
- Presidential Medal of Freedom 2015

Margaret Hamilton

- Led software team for Apollo 11
 Guidance Computer, averted mission abort on first moon landing.
- Coined "software engineering", developed techniques for correctness and reliability.
- Presidential Medal of Freedom 2016

Apollo 11 code print-out

