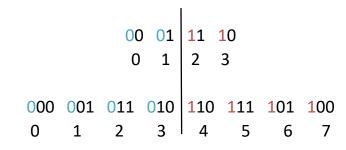


CS 240 Spring 2020 Foundations of Computer Systems Ben Wood

Combinational Logic

Karnaugh maps Building blocks: encoders, decoders, multiplexers



https://cs.wellesley.edu/~cs240/s20/

Combinational Logic 1

Gray Codes = reflected binary codes

Alternate binary encoding designed for electromechanical switches and counting.

How many bits change when incrementing?

Combinational Logic 3

But first ...

А

0

0 0 1

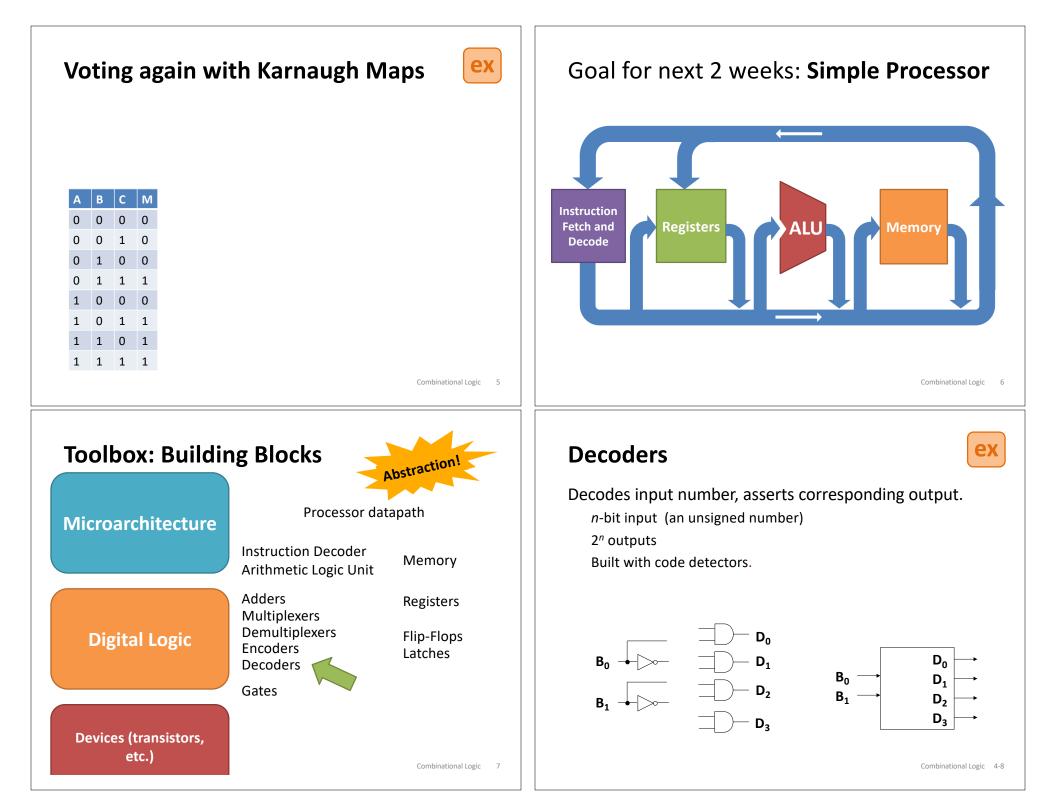
1 1

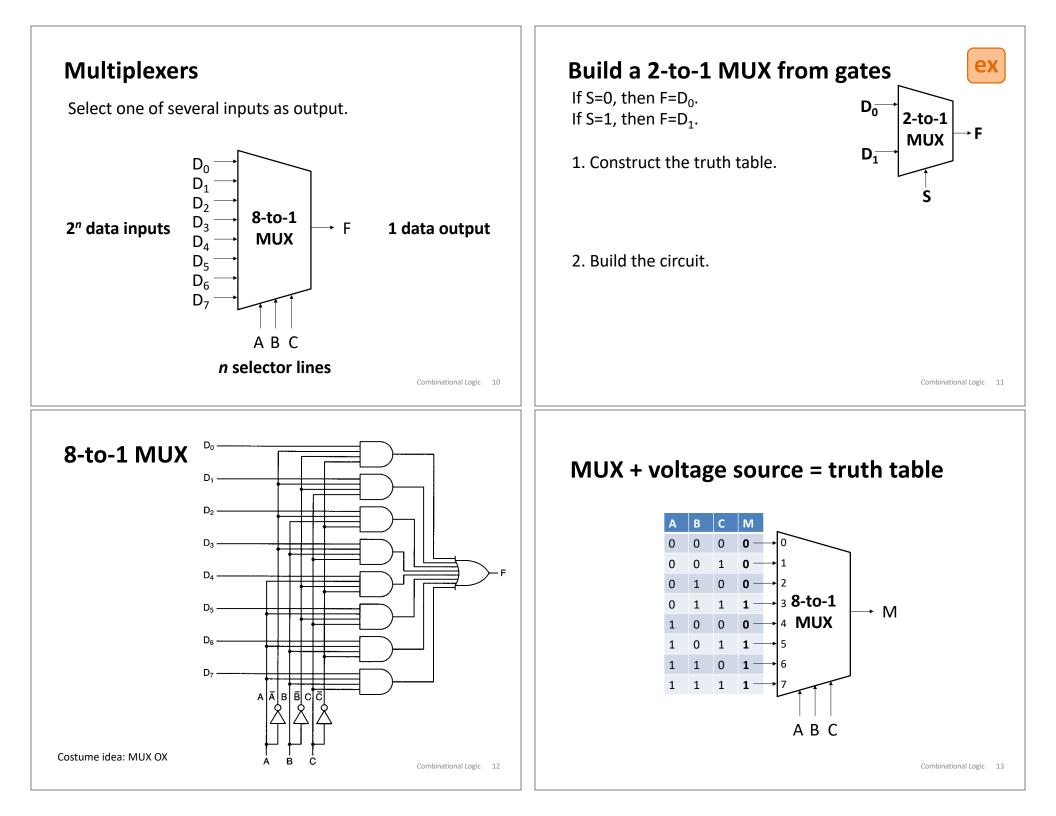
1 1 1

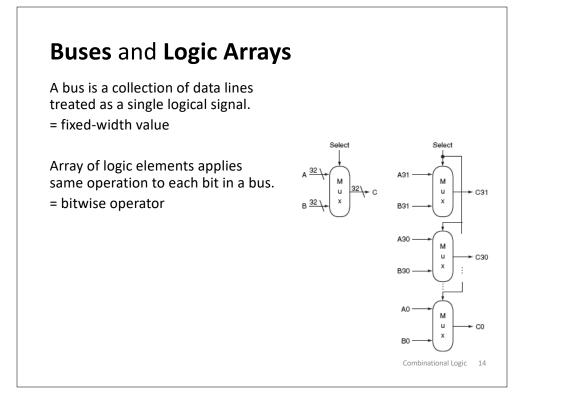
1 1

Recall: sum of products

logical sum (OR)


of products (AND)


of inputs or their complements (NOT).


Α	В	С	Μ	Со
0	0	0	0	• 1
0	0	1	0	• 1
0	1	0	0	
0	1	1	1	ls i
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Combinational Logic 2

Karnaugh Maps: find (minimal) sums of products															
						gray	CD								
A	В	C	D	F(A, E	3, C, C		der 🦳	≻ 00	01	11	10				
0 0	0 0	0 0	0 1	0 0			*	0	0	0	0				
0	0	1	0	0			00	0	0	0	0				
0	0	1	1	0			01	0	0	0	1				
0	1	0	0	0		AB	•-	Ū	Ū	Ū	-				
0	1	0	1	0			11	1	1	0	1				
0	1	1	0	1											
0	1	1	1	0			10	1	1	1	1				
1	0	0	0	1											
1	0	0	1	1											
1	0	1	0	1		maximally sized rectangles whose dimensions (in cells)									
1	0	1	1	1		are powers of 2. (They may overlap or wrap around!) For each rectangle, make a <i>product</i> of the inputs (or									
1	1	0	0	1	2.										
1	1	0	1	1		complements) that are 1 for all cells in the rectangle.									
1	1	1	0	1		(minterms)									
1	1	1	1	0	3.	Take the <i>sum</i> of these products.									
										Combinat	ional Logic	4			

