

CS 240 Spring 2020 Foundations of Computer Systems Ben Wood

Software

Hardware

Operating Systems, Process Model

Process model Process management (Unix/Linux/macOS)

OS Process Model 1

Operating Systems

Problem: unwieldy hardware resources

complex and varied

limited

Solution: operating system

Manage, abstract, and virtualize hardware resources Simpler, common interface to varied hardware Share limited resources among Protect

Key abstractions provided by kernel process virtual memory

Virtualization mechanisms and hardware support:

Program, Application

Programming Language

Compiler/Interpreter

Operating System

Instruction Set Architecture

Microarchitecture

Digital Logic

Devices (transistors, etc.)

Solid-State Physics OS Process Model

context-switching exceptional control flow address translation, paging, TLBs

OS Process Model 3

Processes

Program = code (static)

Process = a running program instance (dynamic)

code + state (contents of registers, memory, other resources)

Key illusions:

Each process seems to have exclusive use of the CPU

Private address space

Logical control flow

Each process seems to have exclusive use of full memory

Why? How?

OS Process Model 5

Next Weeks

Context Switching

Kernel (shared OS code) switches between processes

Control flow passes between processes via *context switch*. Context =

Implementing logical control flow

Abstraction: every process has full control over the CPU

fork

pid_t fork()

- 1. Clone current *parent* process to create identical* *child* process, including all state (memory, registers, **program counter**, ...).
- 2. Continue executing both copies with one difference:
 - returns 0 to the child process
 - returns child's process ID (pid) to the parent process

fork is unique: called *in one process,* returns *in two processes!*

(once in parent, once in child) *almost. See man 3 fork for exceptions.

OS Process Model 8

fork and private copes

Parent and child continue from *private* copies of same state.

Memory contents (code, globals, heap, stack, etc.), Register contents, program counter, file descriptors...

Only difference: return value from fork ()

Relative execution order of parent/child after ${\tt fork}$ () undefined

fork-exec

fork() clone current process

execv() replace process code and context (registers, memory) with a fresh program.

See man 3 execv, man 2 execve

```
// Example arguments: path="/usr/bin/ls",
// argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL
void fork_exec(char* path, char* argv[]) {
    pid_t pid = fork();
    if (pid != 0) {
        printf("Parent: created a child %d\n", pid);
    } else {
        printf("Child: exec-ing new program now\n");
        execv(path, argv);
    }
    printf("This line printed by parent only!\n");
}
```

Running the command ls in a shell: **Executing a new program**

Zombies!

Terminated process still consumes system resources

```
Reaping with wait/waitpid
```

What if parent doesn't reap?

If any parent terminates without reaping a child, then child will be reaped by init process (pid == 1) What if parent runs a long time? *e.g.*, shells and servers

OS Process Model 17

Examining processes on Linux (demo)

ps

pstree

top

/proc

Error-checking

Check return results of system calls for errors! (No exceptions.) Read documentation for return values. Use perror to report error, then exit.

void perror(char* message)

Print "<message>: <reason that last system call failed.>"

OS Process Model 18