
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240 Spring 2020
Foundations of Computer Systems
Ben Wood

https://cs.wellesley.edu/~cs240/s20/

Sequential Logic
and State

Output depends on inputs and stored values.
(vs. combinational logic: output depends only on inputs)

Elements to store values: latches, flip-flops, registers, memory

Latch: CC-BY Rberteig@flickr

Sequential Logic 1

https://cs.wellesley.edu/~cs240/s20/

ALU

Processor: Data Path Components

Registers Memory
Instruction
Fetch and
Decode

12 3

Sequential Logic 2

Bistable latches

Q Q

Suppose we somehow get a 1 (or a 0?) on here.

Q Q
00

=

Sequential Logic 3

SR latch

Q Q
RS

Set Reset

S R Q Q' Q (stable) Q' (stable)
0 0 0 1 0 1
0 0 1 0 1 0
1 0 ? ? 1 0
0 1 ? ? 0 1

Sequential Logic 4

SR latch

Q Q
RS

Q

Q
R

S

Q

QR

S R

S Q

Q

R

S Q

Q

Sequential Logic 5

D latch

if C = 0, then SR latch stores current value of Q.
if C = 1, then D flows to Q:

if D = 0, then R = 1 and S = 0, Q = 0
if D = 1, then R = 0 and S = 1, Q = 1

Sequential Logic 6

D

C

R

S

Q

Q

Clock

Data bit

Time matters!

D

C

Q

Assume Q has an initial state of 0

ex

Sequential Logic 7

Clocks
Clock: free-running signal
with fixed cycle time = clock period = T.
Clock frequency = 1 / clock period

A clock controls when to update
a sequential logic element's state.

Sequential Logic 8

Clock period

Falling edge

Rising edge

Synchronous systems
Inputs to state elements must be valid on active clock edge.

Sequential Logic 9

State
element

1

State
element

2
Combinational logic

D flip-flop with falling-edge trigger

Sequential Logic 10

D

C

QE
QLDL

CL

D latch

QL

QFDF

CF

D latch

QF Q

leader follower

Clock
leader stores D as E

follower stores E as Q

Can still read Qnow Qnext becomes Qnow

Time

Time matters!

D

C

E

Q

Assume Q and E have an initial state of 0

ex

Sequential Logic 11

Reading and writing in the same cycle

Assume Q is initially 0.
QD

C
D Flip-Flop

QClock

Sequential Logic 12

D flip-flop = one bit of storage

Sequential Logic 13

QD

C
D Flip-Flop

Q

1

A 1-nybble* register
(a 4-bit hardware storage cell)

Sequential Logic 14

Write

Clock

0

1

0

1

QD

C
D Flip-Flop

Q
QD

C
D Flip-Flop

Q
QD

C
D Flip-Flop

Q
QD

C
D Flip-Flop

Q

*Half a byte!

Register file

Read ports
Why 2?

Read register
selector 1
Read register
selector 2

Write register
selector
Write data

Write?

Read data 1

Read data 2

r

r

r

w

w

w

r = log2 number of registers
w = bits in word

Array of registers, with register selectors, write/read control,
input port for writing data, output ports for reading data.

Write port
0 = read
1 = write

Sequential Logic 15

Read ports
(data out)

Sequential Logic 16

 C.8 Memory Elements: Flip-Flops, Latches, and Registers C-55

FIGURE C.8.7 A register fi le with two read ports and one write port has fi ve inputs and
two outputs. The control input Write is shown in color.

FIGURE C.8.8 The implementation of two read ports for a register fi le with n registers
can be done with a pair of n-to-1 multiplexors, each 32 bits wide. The register read number
sig nal is used as the multiplexor selector signal. Figure C.8.9 shows how the write port is implemented.

Read register
number 1 Read

data 1Read register
number 2

Read
data 2

Write
register

Write
Write
data

Register file

Read register
number 1

Register 0

Register 1

. . .

Register n – 2

Register n – 1

M

u

x

Read register
number 2

M

u

x

Read data 1

Read data 2

AppendixC-9780123747501.indd 55AppendixC-9780123747501.indd 55 26/07/11 6:29 PM26/07/11 6:29 PM

FIGURE C.8.9 The write port for a register fi le is implemented with a decoder that is used
with the write signal to generate the C input to the registers. All three inputs (the regis ter
number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct
data is written into the register fi le.

Write

0
1

n-to-2n

decoder

n – 2

n – 1

Register 0

C

D

Register 1

C

D

Register n – 2

C

D

Register n – 1

C

D

...

Register number
...

Register data

valid during the time it is read, as we saw earlier in Figure C.7.2. The value returned
will be the value written in an earlier clock cycle. If we want a read to return the
value currently being written, additional logic in the register fi le or out side of it is
needed. Chapter 4 makes extensive use of such logic.

Specifying Sequential Logic in Verilog
To specify sequential logic in Verilog, we must understand how to generate a clock,
how to describe when a value is written into a register, and how to specify sequential
control. Let us start by specifying a clock. A clock is not a predefi ned object in
Verilog; instead, we generate a clock by using the Verilog notation #n before a
statement; this causes a delay of n simulation time steps before the execu tion of the
statement. In most Verilog simulators, it is also possible to generate a clock as an
external input, allowing the user to specify at simulation time the number of clock
cycles during which to run a simulation.

The code in Figure C.8.10 implements a simple clock that is high or low for one
simulation unit and then switches state. We use the delay capability and blocking
assignment to implement the clock.

C-56 Appendix C The Basics of Logic Design

AppendixC-9780123747501.indd 56AppendixC-9780123747501.indd 56 26/07/11 6:29 PM26/07/11 6:29 PM

Write port (data in)

Sequential Logic 17

incoming data

register number

write control
clock

RAM (Random Access Memory)

Similar to register file, except…

A B

Sequential Logic 18

16 x 4 RAM

19

4 to 16
decoder

data
out

1101

4-bit
address

Sequential Logic

