
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240 Spring 2020
Foundations of Computer Systems
Ben Wood

https://cs.wellesley.edu/~cs240/s20/

Virtual Memory
Process Abstraction, Part 2: Private Address Space

Motivation: why not direct physical memory access?
Address translation with pages

Optimizing translation: translation lookaside buffer
Extra benefits: sharing and protection

Memory as a contiguous array of bytes is a lie! Why?

1Virtual Memory

Problems with physical addressing

2

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data

8: ...

4

Virtual Memory

Problem 1: memory management

3

Main memory

What goes
where?

stack
heap
code

globals
…

Process 1
Process 2
Process 3
…
Process n

×

Also:

Context switches must swap out entire memory contents.
Isn't that expensive? Virtual Memory

Problem 2: capacity

4

64-bit addresses can address
several exabytes

(18,446,744,073,709,551,616 bytes)

Physical main memory offers
a few gigabytes

(e.g. 8,589,934,592 bytes)

?

1 virtual address space per process,
with many processes…

(To scale with 64-bit address space,
you can't see it.)

Virtual Memory

Problem 3: protection

5

Physical main memory

Process i

Process j

Problem 4: sharing

Physical main memory

Process i

Process j

Virtual Memory

Solution: Virtual Memory (address indirection)

6

Private virtual address

space per process.

Physical memory

V
i
r
t
u

a
l

a

d
d

r
e

s
s

s
p

a
c
e

Process 1

Process n

virtual-to-physical

mapping

virtual
addresses

physical
addresses

virtual
addresses

Single physical address space

managed by OS/hardware.

V
i
r
t
u

a
l

a

d
d

r
e

s
s

s
p

a
c
e

data

data

Virtual Memory

Indirection

Direct naming

Indirect naming

7

"2"

"x"

2

What if we move Thing?

Thing

7

0
1

2

3

6

5

4
What X
currently
maps to

"2"

"2"

"x"

"x"

"x"

(it's everywhere!)

Virtual Memory

Tangent: indirection everywhere

• Pointers
• Constants
• Procedural abstraction
• Domain Name Service (DNS)
• Dynamic Host Configuration Protocol (DHCP)
• Phone numbers
• 911
• Call centers
• Snail mail forwarding
• …“Any problem in computer science can be solved by adding another level of indirection.”

–David Wheeler, inventor of the subroutine, or Butler Lampson

Another Wheeler quote? "Compatibility means deliberately repeating other people's mistakes."
Virtual Memory 8

Virtual addressing and address translation

9Physical addresses are invisible to programs.

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address

(PA)

Data

8: ...

CPU
Virtual address

(VA)

CPU Chip

44100

Memory Management Unit

translates virtual address to physical address

Virtual Memory

Page-based mapping

Physical

Address Space

Physical

Page

0

Physical

Page

1

…

Physical

Page

2
p

- 1

0

2m - 1

Virtual

Address Space

Virtual

Page

0

Virtual

Page

1

…

Virtual

Page

2
v

- 1

0

2n - 1

Virtual

Page

2

Virtual

Page

3

fixed-size, aligned pages
page size = power of two

Map virtual pages

onto physical pages.

Some virtual pages do not fit!
Where are they stored?

Virtual Memory 10

Cannot fit all virtual pages! Where are the rest stored?

Physical Memory

Address Space

Physical

Page

0

Physical

Page

1

…

Physical

Page

2
p

- 1

0

2m - 1

Virtual Memory

Address Space

Virtual

Page

0

Virtual

Page

1

…

Virtual

Page

2
v

- 1

0

2n - 1

Virtual

Page

2

Virtual

Page

3

1. On disk if used

2. Nowhere if not (yet?) used

virtual address space
usually much larger than
physical address space

Virtual Memory 11

Virtual memory: cache for disk?

12

DiskMain
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CPU Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:
Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~8 GB ~500 GB

Example system

Cache miss penalty
(latency): 33x

Memory miss penalty
(latency): 10,000x

SRAM DRAM

solid-state "flash"
or

spinning
magnetic platter.

Not drawn to scale

Virtual Memory

Design for a slow disk: exploit locality

Physical Memory

Address Space

Physical

Page

0

Physical

Page

1

…

Physical

Page

2
p

- 1

0

2m - 1

Virtual Memory

Address Space

Virtual

Page

0

Virtual

Page

1

…

Virtual

Page

2
v

- 1

0

2n - 1

Virtual

Page

2

Virtual

Page

3

on disk

Virtual Memory 13

Design for a slow disk: exploit locality

Physical Memory

Address Space

Physical

Page

0

Physical

Page

1

…

Physical

Page

2
p

- 1

0

2m - 1

Virtual Memory

Address Space

Virtual

Page

0

Virtual

Page

1

…

Virtual

Page

2
v

- 1

0

2n - 1

Virtual

Page

2

Virtual

Page

3

on disk

Fully associative

• Store any virtual page in any physical page

• Large mapping function

Large page size

usually 4KB, up to 2-4MB

Sophisticated

replacement policy

• Not just hardware Write-back

Associativity?

Page size?

Replacement

policy?
Write

policy?Virtual Memory 14

Address translation

15

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address

(PA)

Data

8: ...

CPU
Virtual address

(VA)

CPU Chip

44100

Virtual Memory

Page table

array of page table entries (PTEs)
mapping virtual page to where it is stored

16

Physical pages

(Physical memory)

Swap space

(Disk)

VP 7

VP 4

PP 0

VP 2

VP 1

PP 3

How many page tables are in the system?

null

null

page table

0
1

0

0
1
1
0
1

Valid
Physical Page Number

or disk address
PTE 0

PTE 7

Memory resident,
managed by HW (MMU), OS

VP 3

VP 6

Virtual Memory

Address translation with a page table

17

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (VA)

Physical address (PA)

Valid Physical page number (PPN)

Page table

base register

(PTBR)

Page table
Base address
of current process's
page table

Virtual page mapped
to physical page?

yes = page hit

Virtual Memory

On disk

Page hit: virtual page is in memory

18

Physical pages

(Physical memory)

Swap space

(Disk)

VP 7

VP 4

PP 0VP 1

PP 3

On disk
PP 2

null

null
PP 0
PP 1

PP 3

page table

0
1

0

0
1
1

0
1

Valid
Physical Page Number

or disk address
PTE 0

PTE 7

Virtual Page Number

VP 2

VP 3

VP 6

Virtual Memory

PP 1

PP 3
On disk

Page fault:

19

Physical pages

(Physical memory)

Swap space

(Disk)

VP 7

VP 4

PP 0VP 1

PP 3

On disk
PP 2

null

null
PP 0

page table

0
1

0

0
1
1
0

1

Valid
Physical Page Number

or disk address
PTE 0

PTE 7

Virtual Page Number

VP 2

VP 3

VP 6

PP 1

PP 2

Virtual Memory

Process

Page fault: exceptional control flow

Process accessed virtual address in a page that is not in physical memory.

20

User Code OS exception handler

exception: page fault

Load page

into memoryreturn

movl

Returns to faulting instruction:
movl is executed again!

Virtual Memory

PP 1

PP 3
On disk

Page fault: 1. page not in memory

21

Physical pages

(Physical memory)

Swap space

(Disk)

VP 7

VP 4

PP 0VP 1

PP 3

On disk
PP 2

null

null
PP 0

page table

0
1

0

0
1
1
0

1

Valid
Physical Page Number

or disk address
PTE 0

PTE 7

Virtual Page Number

VP 2

What now?

OS handles fault

Exceptio
n!

VP 3

VP 6

Virtual Memory

null

0 On disk
PP 1
On disk

PP 3

Page fault: 2. OS evicts another page.

22

Physical pages

(Physical memory)

Swap space

(Disk)

VP 7

VP 4

PP 0VP 1

PP 3

VP 3

On disk
PP 2

null

page table

0
1

0

0

1
0

1

Valid
Physical Page Number

or disk address
PTE 0

PTE 7

VP 6

Virtual Page Number

VP 2

"Page out"

VP 1

Virtual Memory

PP 11

PP 3
PP 0

Page fault: 3. OS loads needed page.

23

Physical pages

(Physical memory)

Swap space

(Disk)

VP 7

VP 4

PP 0

VP 2

PP 3

On disk
PP 2

null

null
On disk

page table

0
1

0

0
1

1

1

Valid
Physical Page Number

or disk address
PTE 0

PTE 7

Virtual Page Number

VP 3

VP 6

VP 1

VP 3

Finally:

Re-execute faulting instruction.

Page hit!

"Page in"

Virtual Memory

Terminology

context switch
Switch control between processes on the same CPU.

page in
Move page of virtual memory from disk to physical memory.

page out
Move page of virtual memory from physical memory to disk.

thrash
Total working set size of processes is larger than physical memory.
Most time is spent paging in and out instead of doing useful work.

24Virtual Memory

Address translation: page hit

1) Processor sends virtual address to MMU (memory management unit)

2-3) MMU fetches PTE from page table in cache/memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Virtual Memory 25

MMU Cache/
Memory

PA

Data

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in cache/memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

Virtual Memory 26

MMU Cache/
Memory

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

Translation Lookaside Buffer (TLB)

Small hardware cache in MMU just for page table entries
e.g., 128 or 256 entries

Much faster than a page table lookup in memory.

In the running for "un/classiest name of a thing in CS"

27

How fast is translation?

How many physical memory accesses are required to complete
one virtual memory access?

Virtual Memory

TLB hit

28

MMU Cache/
Memory

PA

Data

CPU VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

Virtual Memory

TLB miss

29

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

A TLB miss incurs an additional memory access (the PTE)

Fortunately, TLB misses are rare. Does a TLB miss require disk access?
Virtual Memory

Memory system example (small)

Addressing
14-bit virtual addresses
12-bit physical address
Page size = 64 bytes

30

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Simulate accessing these virtual addresses on
the system: 0x03D4, 0x0B8F, 0x0020

Virtual Memory

Memory system example: page table

Only showing first 16 entries (out of 256 = 28)

What about a real address space? Read more in the book…

31

10D0F
1110E
12D0D
0–0C
0–0B
1090A
11709
11308

ValidPPNVPN

0–07
0–06
11605
0–04
10203
13302
0–01
12800

ValidPPNVPN

virtual page #___ TLB index___ TLB tag ____ TLB Hit? __ Page Fault? __ physical page #: ____

Virtual Memory

Memory system example: TLB

16 entries
4-way associative

32

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB indexTLB tag

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

TLB ignores page offset. Why?

virtual page #___ TLB index___ TLB tag ____ TLB Hit? __ Page Fault? __ physical page #: ____

Virtual Memory

Memory system example: cache

16 lines
4-byte block size
Physically addressed
Direct mapped

33

11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache offsetcache indexcache tag

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F
D31B7783113E
15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx

cache offset___ cache index___ cache tag____ Hit? __ Byte: ____

Virtual Memory

Virtual memory benefits:
Simple address space allocation

Process needs private contiguous address space.
Storage of virtual pages in physical pages is fully associative.

34

0

N-1

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

PP 9

Process 1:
Physical Address Space (DRAM)

Process 2:

Virtual Address Spaces

Virtual Memory

Virtual memory benefits:
Simple cached access to storage > memory

Good locality, or least "small" working set = mostly page hits

If combined working set > physical memory:
Thrashing: Performance meltdown. CPU always waiting or paging.

Full indirection quote:
“Every problem in computer science can be solved by adding another
level of indirection, but that usually will create another problem.”

35

All necessary
page table entries

fit in TLB

Working set pages
fit in physical memory

Virtual Memory

Virtual memory benefits:
Protection:

All accesses go through translation.
Impossible to access physical memory not mapped in virtual address space.

Sharing:
Map virtual pages in separate address spaces to same physical page (PP 6).

36

Process 1:
Physical Address Space (DRAM)

0

N-1

(e.g., execute-only

library code: libc)

Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Virtual Address Spaces

Virtual Memory

Virtual memory benefits:
Memory permissions

37

Process 1: Physical Page NumWRITE EXEC
PP 6NoNo
PP 4No Yes
PP 2Yes

Process 2:

No

READ
Yes

No
Yes

WRITE EXEC
PP 9Yes No
PP 6NoNo

PP 11Yes No

READ

Yes
No

VP 0:
VP 1:
VP 2:

VP 0:
VP 1:
VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

Yes
Yes
Yes

Yes
Yes
Yes

Valid

Valid Physical Page Num

permission bits

Page Table

Page Table

permission bits

MMU checks on every access.
Exception if not allowed.

Yes

How would you set permissions for the stack, heap, global variables, literals, code?
Virtual Memory

Summary: virtual memory

Programmer’s view of virtual memory

System view of virtual memory

38

Each process has its own private linear address space
Cannot be corrupted by other processes

Uses memory efficiently (due to locality) by caching
virtual memory pages
Simplifies memory management and sharing
Simplifies protection -- easy to interpose and check
permissions
More goodies:

• Memory-mapped files
• Cheap fork() with copy-on-write pages (COW)

Virtual Memory

Summary: memory hierarchy

L1/L2/L3 Cache: Pure Hardware

Virtual Memory: Software-Hardware Co-design

39

Purely an optimization
"Invisible" to program and OS, no direct control
Programmer cannot control caching, can write code that fits well

Supports processes, memory management
Operating System (software) manages the mapping

Allocates physical memory
Maintains page tables, permissions, metadata
Handles exceptions

Memory Management Unit (hardware) does translation and checks
Translates virtual addresses via page tables, enforces permissions
TLB caches the mapping

Programmer cannot control mapping, can control sharing/protection via OS

Virtual Memory

