CS 240 Lab 2
 More Digital Logic and
 Combinational Circuits

- Binary and Hex Numbers/Binary Counter
- Multiplexer
- Decoder
- Adder

Binary and Hexadecimal Numbers

\left.| Hex | | Binary | | | |
| :--- | :--- | :--- | :--- | :--- | :---: |
| | | QD QC QB QA | | | |
| 0 | | 0 | 0 | 0 | |
| 1 | 0 | | | | |
| 1 | | 0 | 0 | 0 | |
| 1 | 1 | | | | |
| 2 | | 0 | 0 | 1 | |$\right) 0$

Hex can be converted to binary and vice versa by grouping into 4 bits.

$$
11110101_{2}=\mathrm{F}_{16} \quad 37_{16}=00110111_{2}
$$

Binary Counter

NOTE: logic diagram is not the same as pinouts! Shows information about the logical operation of the device.

- Inputs on left side of diagram
- Outputs on right
- Voltage shown on top
- Ground shown on bottom

Multiplexer

A multiplexer can be thought of as a selection circuit, which steers a single input from a set of inputs through to the output, based on the select line.

Select one

- n select lines
${ }^{-} 2^{n}$ input lines
- 1 output

One of the possible 2^{n} inputs is chosen by the n select lines, and gated through to the output of a multiplexer. The truth table for an 8×1 MUX is:

S2	S1	S0	\mathbf{Q}
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Decoder

A decoder takes an n-bit binary number as an input, and asserts the corresponding numbered output from the set of 2^{n} outputs.

- n input/select lines
- 2^{n} outputs
- only one of the outputs is active at any given time, based on the value of the n select lines.

2x4 Decoder

Built with code detectors:

Truth table for an 3x8 decoder

Adder

Addition is a very important arithmetic operation, and uses the Exclusive OR gate.

Half-Adder - adds two one-bit values

A	B	Cout	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder - uses two half-adders and incorporates a carry-in

Cin A	B	Cout	Sum		
0	0	0	0	0	Sum $=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{C}$ in
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	Cout $=\mathrm{AB}+(\mathrm{A} \oplus \mathrm{B}) \mathrm{Cin}$
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

