CS 240 Lab 2 More Digital Logic and Combinational Circuits

- Binary and Hex Numbers/Binary Counter
- Multiplexer
- Decoder
- Adder

Binary and Hexadecimal Numbers

<u>Hex</u>	Binary					
	QD	QC	QE	B QA		
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
2 3 4 5	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		
A	1	0	1	0		
В	1	0	1	1		
\mathbf{C}	1	1	0	0		
D	1	1	0	1		
E	1	1	1	0		
F	1	1	1	1		

Hex can be converted to binary and vice versa by grouping into 4 bits.

$$11110101_2 = F5_{16}$$
 $37_{16} = 00110111_2$

Binary Counter

NOTE: logic diagram is not the same as pinouts! Shows information about the logical operation of the device.

- Inputs on left side of diagram
- Outputs on right
- Voltage shown on top
- Ground shown on bottom

Multiplexer

A multiplexer can be thought of as a **selection circuit**, which steers a single input from a set of inputs through to the output, based on the select line.

Multiplexer A B Select one

- n select lines
- ⁻2ⁿ input lines
- 1 output

One of the possible 2ⁿ inputs is chosen by the n select lines, and gated through to the output of a multiplexer. The truth table for an 8x1 MUX is:

<u>S2</u>	<u>S1</u>	<u>S0</u>	Q
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Decoder

A decoder takes an n-bit binary number as an input, and asserts the corresponding numbered output from the set of 2ⁿ outputs.

- n input/select lines
- 2ⁿ outputs
- only one of the outputs is active at any given time, based on the value of the n select lines.

2x4 Decoder

Built with code detectors:

Truth table for an 3x8 decoder

<u>S2</u>	<u>S1</u>	<u>S0</u>		<u>Q0</u>	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	<u>Q5</u>	<u>Q6</u>	Q 7
0	0	0	I	1	0	0	0	0	0	0	0
0	0	1	I	0	1	0	0	0	0	0	0
0	1	0		0	0	1	0	0	0	0	0
0	1	1	1	0	0	0	1	0	0	0	0
1	0	0	-1	0	0	0	0	1	0	0	0
1	0	1	-1	0	0	0	0	0	1	0	0
1	1	0	I	0	0	0	0	0	0	1	0
1	1	1		0	0	0	0	0	0	0	1

Adder

Addition is a very important arithmetic operation, and uses the Exclusive OR gate.

Half-Adder - adds two one-bit values

A	В	Cout	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

 $\begin{tabular}{ll} \textbf{Full Adder} & - \textbf{uses two half-adders and incorporates a} \\ \textbf{carry-in} \end{tabular}$

Cin	A	В	Cout	Sum	
0	0	0	0	0	$Sum = A \oplus B \oplus Cin$
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	Cout = $AB+(A \oplus B)Cin$
1	0	1	1	0	,
1	1	0	1	0	
1	1	1	1	1	