
Laboratory 5
Instruction Set Architecture and Microarchitecture

In computer science, an Instruction Set Architecture (ISA) is an abstract
model of a computer.

At a minimum, the ISA specifies:
• size of address bus: specifies the size of the memory in the

computer (and, therefore, the number of address bits required),
• size of data bus: specifies the size of an instruction and the size of a

standard data value stored in a register (and, therefore, the number
of data bits required),

• the number of registers in the CPU: used to store values when
executing instructions, and

• the formats and meaning of the instructions which can be executed
in the CPU.

A microarchitecture is a concrete implementation of an ISA.

We will define an ISA for a machine we call the HW machine, and we
will then use LogicWorks to implement a working microarchitecture that
we can experiment with and test.

HW Instruction Set Architecture

• 8 bit address bus so, instruction memory has 28 = 256 bytes

• 16 bit data bus so, each instruction is 16 bits (2 bytes), and each

register will hold 16 bits of data

• 16 registers
R0 = 0 (constant)
R1 =1 (constant)
R2-R15 general purpose

For a complete definition of a computer, it is also necessary to define
instructions which can transfer values between the CPU and memory.

We omit those here because we only have time to consider a subset of the
necessary instructions in a single lab.

Fetch Instruction from Memory

Remember the fetch instruction circuit at the end of our last lab?

Programs are stored as instructions in memory. The first instruction in the
program is assumed to start at address 0 in memory.

The Program Counter (PC) register holds the address of the currently
executing instruction.

The PC is initialized to 0 by a reset to begin execution of the program.

1. The instruction in memory at the address from PC is fetched (read at
the outputs of the memory). It is then sent to the CPU to be executed.

2. The PC is incremented by 2.

Steps 1 and 2 are repeated until all instructions are executed.

This model assumes that all instructions in a program are always executed
in sequential order.

However, the instruction in programs do not always execute in sequential
order!

You must sometimes skip some instructions (like when you have to go to
the else clause of an if statement, you skip the if clause). For example:

 if (x < 0)
 y = 2; // skip this statement when the condition is not met
 else
 y = 3;

Or, you may need to go back to an earlier instruction (like when you get
to the end of loop, you have to get back to the beginning of the loop to
repeat it).

 while (x > 0) {
 y = y+1;
 x = x – 1; //after you execute this statement, you must
 // go back to the beginning of the loop to test if
 // the loop condition is still true to repeat the loop
 }

 BEQ (Branch-if -EQual)

In our HW machine, the BEQ (Branch-if-EQual) instruction allows us to
conditionally change the sequential order of execution of instructions:

 BEQ Rs Rt offset

This instruction compares the contents of Rs and Rt and calculates a new
address to branch to if the registers’ contents are equal.

The branch address is calculated relative to the address of the next
sequential instruction in memory:

 PC + 2

The offset is the number of instructions away that the branch address is
from the usual next sequential instruction.

The offset is a signed value (it can be either positive or negative), and is
specified as a 4-bit value. So, it can range from -8 to +7 in our HW
machine.

Since each instruction is two bytes, the offset is multiplied by 2 and added
to the address of the next sequential instruction to calculate the branch
address. This formula can be expressed as:

PC + 2 + (2*offset)

For example, suppose you have executed the first few instructions of a
program and the next ones are:

Address(from PC) Instruction at Address

 6: BEQ R3 R0 1
 8: ADD R1 R2 R2
 10: AND R0 R0 R4

When executing BEQ R3 R0 1, PC contains address 6 and offset = 1.

 If, at that point, R3 contains a 0, then R3 and R0 contain equal values,
and so the next value of the PC will be 6 + 2 + (2*1)= 10. Program
execution will skip the instruction at address 8 and go straight to 10.

However, if R3 does not contain a 0, the program will simply progress to
the next address in memory, PC + 2, which will be 6 + 2 = 8.

We add the following logic to our existing instruction fetch circuit to
implement BEQ:

A MUX (multiplexer) selects the next value of the PC, either PC+2
(calculated by the first adder), or PC + 2 + 2*offset (calculated by the
second adder).

The MUX selects which address to use based on two control bits, Zero
and Branch.

On a BEQ instruction, the ALU subtracts the contents of Rs from Rt.
The Zero bit is set if the result is 0.

The Branch bit simply indicates that a BEQ instruction is being executed
(other instruction may also set the Zero bit in the ALU, so it is necessary
that both Branch = 1 and Zero = 1 for the branch address to be selected.

We will construct this circuit in LogicWorks to verify correct operation.

JMP (Jump)

In the HW computer, there is also an unconditional branch instruction
called JMP (Jump):

JMP offset

Here, the offset is a 12-bit value which specifies the number of
instructions from the beginning of the program to jump to:

PC = offset * 2

For example, JMP 3 sets the PC to 6, causing the instruction stored at
address 6 (i.e., the 3rd instruction in the program) to be executed next.

CPU Datapath

The following diagram describes the basic datapath for executing the
arithmetic and logic instructions inside the CPU. It consists of a Register
File and an ALU (you have studied both devices in previous labs).

This circuit can execute the arithmetic and logical operations including
ADD,SUB,AND, and OR. The general form is:

 op Rs Rt Rd

– read contents of Rs and Rt from Register File at Read Data 1 and
Read Data 2 outputs

– perform an operation in the ALU on the contents of the registers
(the ALUOp bits control which operation)

– write the ALU result back to register Rd in register file

The ALUOp bits are control signals that specify AINV, BNEG, and a 2-
bit operation (00 = AND, 01=OR, 10=+). Remember those from our
study of the ALU?

The RegWrite control signal indicates whether a particular instruction
results in a change to a register (some instructions do not change any
registers).

The ALUop and RegWrite control lines are functions of the opcode, so
there is some simple logic which can be used to produce these signals.

The following table shows the opcode for each instruction, and the
associated control signals ALUop and RegWrite to be used for each .

Instruction Opcode ALUop RegWrite
 Ainv Bneg Op1 Op0
ADD 0010 0 0 1 0 1
SUB 0011 0 1 1 0 1
AND 0100 0 0 0 0 1
OR 0101 0 0 0 1 1
BEQ 0111 0 1 1 0 0
JMP 1000 don’t care 0

BEQ is accomplished by subtraction (which sets the Zero bit).

BEQ and JMP do not change the value of a register.

JMP does not even use the ALU (it is implemented as part of the
instruction fetch circuit)

In lab, you will connect the Register File to the ALU, and test its operation.

We won’t get a chance to design how to produce the control signals, but
you have seen how to do that in an earlier lab.

Full Implementation

Finally, we abstract the datapath circuit into a CPU device, and connect it
to our circuit for loading and fetching instructions from memory to
execute a program.

You are given this circuit:

 You will translate a short program from assembly language to machine
code, load the instructions into memory, and then execute the instructions
to run the program.

