
Laboratory 5 
Instruction Set Architecture and Microarchitecture 

 
In computer science, an Instruction Set Architecture (ISA) is an abstract 
model of a computer. 
 
At a minimum, the ISA specifies: 
• size of address bus:  specifies the size of the memory in the 

computer  (and, therefore, the number of address bits required),  
• size of data bus:  specifies the size of an instruction and the size of a 

standard data value stored in a register  (and, therefore, the number 
of data bits required),  

• the number of registers in the CPU:  used to store values when 
executing instructions, and 

• the formats and meaning of the instructions which can be executed 
in the CPU. 

 
A microarchitecture is a concrete implementation of an ISA. 
 
We will define an ISA for a machine we call the HW machine, and we 
will then use LogicWorks to implement a working microarchitecture that 
we can experiment with and test. 
 



HW Instruction Set Architecture 
 

 
• 8 bit address bus so, instruction memory has 28 = 256 bytes 

 
• 16 bit data bus so, each instruction is 16 bits  (2 bytes), and each 

register will hold 16 bits of data 
 

• 16 registers 
R0 = 0 (constant) 
R1 =1 (constant) 
R2-R15 general purpose 
 

 

 
 
For a complete definition of a computer, it is also necessary to define 
instructions which can transfer values between the CPU and memory. 
 
We omit those here because we only have time to consider a subset of the 
necessary instructions in a single lab. 
 



Fetch Instruction from Memory 
 
Remember the fetch instruction circuit at the end of our last lab? 
 

 
 
Programs are stored as instructions in memory.  The first instruction in the 
program is assumed to start at address 0 in memory. 
 
The Program Counter (PC) register holds the address of the currently 
executing instruction. 
 
The PC is initialized to 0 by a reset to begin execution of the program. 
 

1. The instruction in memory at the address from PC is fetched  (read at 
the outputs of the memory).  It is then sent to the CPU to be executed. 

2. The PC is incremented by 2. 
 
Steps 1 and 2 are repeated until all instructions are executed. 



This model assumes that all instructions in a program are always executed 
in sequential order. 
 
However, the instruction in programs do not always execute in sequential 
order!   
 
You must sometimes skip some instructions (like when you have to go to 
the else clause of an if statement, you skip the if clause).  For example: 
 
  
 if (x < 0)    
     y = 2;    // skip this statement when the condition is not met 
        else 
    y = 3;     
 
Or, you may need to go back to an earlier instruction  (like when you get 
to the end of loop, you  have to get back to the beginning of the loop to 
repeat it). 
 
 while (x > 0) { 
    y = y+1; 
    x = x – 1; //after you execute this statement, you must 
          // go back to the beginning of the loop to test if 
    // the loop condition is still true to repeat the loop  
 } 
 



 BEQ (Branch-if -EQual) 
 
In our HW machine, the BEQ (Branch-if-EQual) instruction allows us to 
conditionally change the sequential order of execution of instructions: 
 
 BEQ Rs  Rt  offset 
 
This instruction compares the contents of Rs and Rt and calculates a new 
address to branch to if the registers’ contents are equal. 
 
The branch address is calculated relative to the address of the next 
sequential  instruction in memory: 
 
 PC + 2 
 
The offset  is the number of instructions away that the branch address is 
from the usual next sequential instruction. 
 
The offset is a signed value (it can be either positive or negative), and is 
specified as a 4-bit value.  So, it can range from -8 to +7 in our HW 
machine. 
 
Since each instruction is two bytes, the offset is multiplied by 2 and added 
to the address of the next sequential instruction to calculate the  branch 
address.  This formula can be expressed as: 
 

PC + 2 + (2*offset)     
 



For example, suppose you have executed the first few instructions of a 
program and the next ones are: 

 
Address(from PC)  Instruction at Address 

  
 6:   BEQ R3 R0 1 
 8:   ADD R1 R2 R2 
      10:   AND R0 R0 R4 
 

When executing BEQ R3 R0 1, PC contains address 6 and offset  = 1. 
 

 If, at that point, R3 contains a 0,  then R3 and R0 contain equal values, 
and so the next value of the PC will be 6 + 2 + (2*1)= 10.  Program 
execution will skip the instruction at address 8 and go straight to 10. 

 
However, if R3 does not contain a 0, the program will simply progress to 
the next address in memory, PC + 2,  which will be 6 + 2 = 8. 
 



We add the following logic to our existing instruction fetch circuit to 
implement BEQ: 
  

  
 
A  MUX  (multiplexer) selects the next value of the PC, either PC+2 
(calculated by the first adder), or PC + 2 + 2*offset (calculated by the 
second adder). 
 
The MUX selects which address to use based on two control bits, Zero 
and Branch. 
 
On a BEQ instruction, the ALU subtracts the contents of  Rs from Rt.  
The Zero bit is set if the result is 0. 
 
The Branch bit simply indicates that a BEQ instruction is being executed 
(other instruction may also set the Zero bit in the ALU, so it is necessary 
that both Branch = 1 and Zero = 1 for the branch address to be selected. 
 
We will construct this circuit in LogicWorks to verify correct operation. 



JMP (Jump) 
 
In the HW computer, there is also an unconditional branch instruction 
called JMP (Jump): 
 

JMP offset 
 
Here, the offset  is a 12-bit value which specifies the number of 
instructions from the beginning of the program to jump to: 
 

PC = offset * 2 
 
For example, JMP 3 sets the PC to 6, causing the instruction stored at 
address 6 (i.e., the 3rd instruction in the program) to be executed next. 
 



CPU Datapath  
 
The following diagram describes the basic datapath for executing the 
arithmetic and logic instructions inside the CPU.  It consists of a Register 
File and an ALU (you have studied both devices in previous labs). 
 
 

 
 
This circuit can execute the arithmetic and logical operations including  
ADD,SUB,AND, and OR.  The general form is: 
   
 op Rs Rt Rd 
 

– read contents of Rs and Rt from Register File at Read Data 1 and 
Read Data 2 outputs 

– perform an operation in the ALU on the contents of the registers 
(the ALUOp bits control which operation) 

– write the ALU result back to register Rd in register file 
 

 
 



The ALUOp bits are control signals that specify AINV, BNEG, and a 2-
bit operation (00 = AND, 01=OR, 10=+).  Remember those from our 
study of the ALU? 
 
The RegWrite control signal indicates whether a particular instruction 
results in a change to a register (some instructions do not change any 
registers).  
 
The ALUop and RegWrite control lines are functions of the opcode, so 
there is some simple logic which can be used to produce these signals.   
 
The following table shows the opcode for each instruction,  and the 
associated control signals ALUop and RegWrite to be used for each . 
 

Instruction   Opcode   ALUop     RegWrite 
      Ainv Bneg Op1 Op0    
ADD                0010       0   0   1    0       1 
SUB         0011       0   1   1    0       1 
AND                0100       0   0   0    0       1                      
OR           0101       0   0   0    1       1                
BEQ         0111       0   1   1    0       0                
JMP          1000       don’t care         0      
 

BEQ is accomplished by subtraction (which sets the Zero bit). 

BEQ and JMP do not change the value of a register.  
 
JMP does not even use the ALU (it is implemented as part of the 
instruction fetch circuit) 
 
In lab, you will connect the Register File to the ALU, and test its operation.   
 
We won’t get a chance to design how to produce the control signals, but 
you have seen how to do that in an earlier lab. 



  
Full Implementation 
 
Finally, we abstract the datapath circuit into a CPU device, and connect it 
to our circuit for loading and fetching instructions from memory to 
execute a program. 
 
You are given this circuit: 
 

 
 
 You will translate a short program from assembly language to machine 
code, load the instructions into memory, and then execute the instructions 
to run the program. 
 

 
 


