
CS240 Lab 6 Assignment
Gnu Debugger (gdb) Practice

You should use your Linux environment (VSCode) for this assignment, and enter the commands given in
the Terminal. This exercise is similar to part 8 from the practice problems (but even if you did that
problem, please repeat here for the lab assignment).

The intention of the assignment is to get introduced to and start using the gdb debugger. But there are a
few questions that you should answer and submit as a hardcopy (the questions are in boxes within the
exercises). It’s okay to just submit the answers only (and not print the whole exercise).

If you did the practice problems for the Pointers assignment, you should already have the cmemory
repository.

NOTE: the $ in the commands listed represents the command-line prompt in the Terminal. So, don’t type
the $ when entering the commands.

1. If you do not already have the repository, get it:

 $ cs240 start cmemory

 $ cd cmemory

The file strings3.c from the cmemory repository for the pointers assignment contains the
following code:

Examine the code carefully, and read the comments given (highlighted in yellow):

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char** argv) {
// dynamically allocate space for 3 pointers. commandA will be the address in memory where the
first pointer is stored.

//Each pointer will be the starting address of a string of characters.

//We will refer to commandA as an array of pointers to strings.

 char** commandA = (char**)malloc(3 * sizeof(char*));

// Initialize the strings and mark the end of the commandA array by assigning a NULL to the last
pointer in the array

 commandA[0] = "emacs";
 commandA[1] = "strings.c";
 commandA[2] = NULL;

// deallocate the memory used for the commandA array
 free(commandA);

//allocate a new array of 3 pointers called commandB
 char** commandB = (char**)malloc(3 * sizeof(char*));

 //initialize the strings for commandB
 commandB[0] = "ls";
 commandB[1] = "cs240-pointers";
 commandB[2] = NULL;

 //change the second string of the commandA array
 commandA[1] = "uh oh";

 //print the strings of each array
 printf("A: %s %s\n", commandA[0], commandA[1]);
 printf("B: %s %s\n", commandB[0], commandB[1]);

 // deallocate the commandB array
 free(commandB);

 return 0;
}

2. Compile the strings3.c program to produce an executable file strings3 with the following command:

 $ gcc -Wall --std=c99 -g -O -o strings3 strings3.c

Þ gcc is the Gnu C Compiler
Þ -Wall --std=c99 -g -O are options which tell the compiler what to do.
Þ The –g option creates debugging information for use in the Gnu debugger, gdb

3. Start the debugger using your executable file strings3

 $ gdb ./strings3

GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.el7
Copyright (C) 2013 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/jherbst/cs2402021/cmemory/strings3...done.

 (gdb)

 You will now enter gdb commands at the (gdb) prompt.

4. Set a breakpoint at the beginning of the program (C programs always start execution at the main
function).

 (gdb) break main

 Breakpoint 1 at 0x : file strings3.c, line 7.

What address in memory does main begin (record the address from your own output. where
you see the yellow highlight above):

5. Run the program:

 (gdb) run
 Starting program: /home/jherbst/cs2402021/cmemory/./strings3

 Breakpoint 1, main (argc=1, argv=0x7fffffffe148) at strings3.c:7
 7 int main(int argc, char** argv) {
 Missing separate debuginfos, use: debuginfo-install glibc-2.17-
 323.el7_9.x86_64

NOTE: You can ignore the message about Missing separate debuginfos...

The program has hit the breakpoint at the beginning of main function and paused execution of
the program.

6. Execute a step (a single instruction) of the program:

 (gdb) step

 char** commandA = (char**)malloc(3 * sizeof(char*));

 After a step, gdb displays the next instruction to be executed, highlighted above in yellow, which
will allocate space for an array of 3 pointers to chars. Basically, the array will contain the addresses in
memory of some strings.

7. Take another step to perform the allocation, and then examine (x) the value pointed to by commandA:

 (gdb) step

 (gdb) x commandA

 0x : 0x00000000

 What address in memory does commandA refer to (record the value you see on your computer
where the yellow highlight is shown directly above)?

The 4 bytes in memory starting at commandA are shown, and are highlighted in green above,

 The 4 bytes in memory at address commandA seem to be zeroes at this point, but not because
 our program has written those values. Memory can often contain values from initialization or
 previous use.

8. Take three more steps to execute the statements that initialize the commandA array:

commandA[0] = "emacs";

 (gdb) step

 commandA[1] = "strings.c";

 (gdb) step

 commandA[2] = NULL;

 (gdb) step

9. Display the contents of the commandA array (/3a means display 3 values stored in memory, where the
values are assumed to represent pointers):

 (gdb) x /3a commandA

0x602010: 0x4006f0 0x4006f6
0x602020: 0x0

gdb displays contents of memory from lowest to highest addresses, with a maximum of 16 bytes
per line.

The address is shown in the left column, and the values stored starting at that address, in the
right columns.

You could interpret this as a memory diagram which displays 4 bytes per row as:

 Address Data in Memory
 0x602020: 0x00 0x00 0x00 0x00

 0x602018: 0x00 0x40 0x06 0xf6
commandA=0x602010: 0x00 0x40 0x06 0xf0

Or, as an array:

commandA = [0x4006f0, 0x4006f6, 0x0]

 Why does the last pointer in the array have a value of 0x0?

10. Use gdb to display the strings:

 We are asking to examine the value that commandA is pointing to, displayed as a
 string:

 (gdb) x /s *commandA

 0x4006f0: "emacs"

 Pointer arithmetic is used when you specify commandA+1, so we are asking for the next string:

 (gdb) x /s *(commandA + 1)

 0x4006f6: "strings.c"

11. Take a step to deallocate commandA:

 free(commandA)

 (gdb) step

12. Take another step to allocate space for another array of 3 pointers, and then examine the value of
commandB:

 char** commandB = (char**)malloc(3 * sizeof(char*));

 (gdb) step

 (gdb) x commandB

 0x602010: 0x0

13. Also, examine commandA again:

 (gdb) x commandA

 0x602010: 0x0

What do you notice about the two values? . Why do you think this happened?

14. Take three more steps to execute the statements that initialize the commandB array:

 commandB[0] = "ls";

 (gdb) step

 commandB[1] = "cs240-pointers";

 (gdb) step

 commandB[2] = NULL;

 (gdb) step

15. Display the contents of the commandB array:

 (gdb) x /3a commandB

 0x602010: 0x400700 0x400703
 0x602020: 0x0

 Notice that these are different values than when commandA was initialized.

16. Now execute the next instruction:

 commandA[1] = "uh oh";

 (gdb) step

17. And again display the contents of the command array:

 (gdb) x /3a commandB

Has commandB changed? Did you expect it to?

18. Complete execution of the program:

 printf("A: %s %s\n", commandA[0], commandA[1])

 (gdb) step

 A: ls uh oh

 printf("B: %s %s\n", commandB[0], commandB[1]);

 (gdb) step

 B: ls cs240-pointers

 Explain what is surprising about the output.

How could you modify the program to prevent this incorrect output?

19. Quit out of gdb:

 (gdb) quit

