
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240
Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Memory Hierarchy
and Cache

Memory hierarchy
Cache basics

Locality
Cache organization

Cache-aware programming

Memory Hierarchy and Cache 2

https://cs.wellesley.edu/~cs240/


Devices (transistors, etc.)

Solid-State Physics

Ha
rd
w
ar
e

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application
So
ft
w
ar
e

Memory Hierarchy and Cache 3



How does execution time grow with SIZE?

int array[SIZE];
fillArrayRandomly(array);  
int s = 0;  

for (int i = 0; i < 200000; i++) {
for (int j = 0; j < SIZE; j++) {
s += array[j];

}
}

Memory Hierarchy and Cache 4
SIZE

TIME



Reality

Memory Hierarchy and Cache 5

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 

SIZE

Ti
m

e



Processor-memory bottleneck

Memory Hierarchy and Cache 6

Main 
Memory

CPU Reg

Processor performance
doubled about 
every 18 months Bus bandwidth

evolved much slower

Bandwidth: 256 bytes/cycle
Latency: 1-few cycles

Bandwidth: 2 Bytes/cycle
Latency: 100 cycles

Solution: caches

Cache

Example



Cache
English:
n. a hidden storage space for provisions, weapons, or treasures
v. to store away in hiding for future use

Computer Science:
n. a computer memory with short access time used to store 
frequently or recently used instructions or data
v. to store [data/instructions] temporarily for later quick retrieval

Also used more broadly in CS: software caches, file caches, etc.

Memory Hierarchy and Cache 7



General cache mechanics

Memory Hierarchy and Cache 8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory Larger, slower, cheaper.
Partitioned into blocks (lines).

Data is moved 
in block units

Smaller, faster, more expensive.
Stores subset of memory blocks.

(lines)

CPU Block: unit of data
in cache and memory.
(a.k.a. line)



Cache hit

Memory Hierarchy and Cache 9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

1. Request data in block b.Request: 14

14
2. Cache hit:

Block b is in cache.

CPU



9

Cache miss

Memory Hierarchy and Cache 10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

1. Request data in block b.Request: 12

2. Cache miss:
block is not in cache

4. Cache fill:
Fetch block from memory,
store in cache.

Request: 12

12

12

9

9

12

3. Cache eviction:
Evict a block to make room,
maybe store to memory.

Placement Policy:
where to put block in cache

Replacement Policy:
which block to evict

CPU



Locality: why caches work

Programs tend to use data and instructions at addresses near 
or equal to those they have used recently.

Temporal locality:  
Recently referenced items are likely
to be referenced again in the near future.

Spatial locality:  
Items with nearby addresses are likely
to be referenced close together in time.

How do caches exploit temporal and spatial locality?

Memory Hierarchy and Cache 11

block

block



Locality #1

Data:
Temporal: sum referenced in each iteration
Spatial: array a[] accessed in stride-1 pattern

Instructions:
Temporal: execute loop repeatedly
Spatial: execute instructions in sequence

Assessing locality in code is an important programming skill.

Memory Hierarchy and Cache 12

int sum = 0;
for (int i = 0; i < n; i++) {

sum += a[i];
}
return sum;

What is stored in memory?



Locality #2

Memory Hierarchy and Cache 13

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

1: a[0][0]
2: a[0][1]
3: a[0][2]
4: a[0][3]
5: a[1][0]
6: a[1][1]
7: a[1][2]
8: a[1][3]
9: a[2][0]

10: a[2][1]
11: a[2][2]
12: a[2][3]

stride 1

int sum_array_rows(int a[M][N]) {
int sum = 0;

for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {

sum += a[i][j];
}

}
return sum;

}

row-major M x N 2D array in C



Locality #3

Memory Hierarchy and Cache 14

int sum_array_cols(int a[M][N]) {
int sum = 0;

for (int j = 0; j < N; j++) {
for (int i = 0; i < M; i++) {

sum += a[i][j];
}

}
return sum;

}

1: a[0][0]
2: a[1][0]
3: a[2][0]
4: a[0][1]
5: a[1][1]
6: a[2][1]
7: a[0][2]
8: a[1][2]
9: a[2][2]

10: a[0][3]
11: a[1][3]
12: a[2][3]

stride N

row-major M x N 2D array in C

…

…
a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]



Locality #4

What is "wrong" with this code?
How can it be fixed?

Memory Hierarchy and Cache 15

int sum_array_3d(int a[M][N][N]) {
int sum = 0;

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

for (int k = 0; k < M; k++) {
sum += a[k][i][j];

}
}

}
return sum;

}



Cost of cache misses
Miss cost could be 100 × hit cost.

99% hits could be twice as good as 97%.  How?
Assume cache hit time of 1 cycle, miss penalty of 100 cycles

Mean access time:
97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

Memory Hierarchy and Cache 16

hit/miss rates



Cache performance metrics

Miss Rate
Fraction of memory accesses to data not in cache (misses / accesses)
Typically: 3% - 10% for L1; maybe < 1% for L2, depending on size, etc.

Hit Time
Time to find and deliver a block in the cache to the processor.
Typically: 1 - 2 clock cycles for L1; 5 - 20 clock cycles for L2

Miss Penalty
Additional time required on cache miss = main memory access time
Typically 50 - 200 cycles for L2 (trend: increasing!)

Memory Hierarchy and Cache 17



Memory

Memory hierarchy
Why does it work?

Memory Hierarchy and Cache 18

persistent storage
(hard disk, flash, over network, cloud, etc.)

main memory
(DRAM)

L3 cache
(SRAM, off-chip)

L1 cache
(SRAM, on-chip)

L2 cache
(SRAM, on-chip)

registers
small, fast, 
power-hungry, 
expensive

large, slow, 
power-efficient, 
cheap

pr
og

ra
m se

es
 “m

em
or

y”

explicitly 
program-
controlled



Cache organization
Block
Fixed-size unit of data in memory/cache

Placement Policy
Where in the cache should a given block be stored?

§ direct-mapped, set associative

Replacement Policy
What if there is no room in the cache for requested data?

§ least recently used, most recently used

Write Policy
When should writes update lower levels of memory hierarchy?

§ write back, write through, write allocate, no write allocate

Memory Hierarchy and Cache 19



Blocks

Memory Hierarchy and Cache 20

00000000

00001000

00010000

00011000

Memory
(byte)

address

00010010

Divide address space into fixed-size aligned blocks.
power of 2

full byte address

Block ID
address bits - offset bits

offset within block
log2(block size)

Example: block size = 8

block 

0

block 

1

block 

2

block 

3

00010001
00010010
00010011
00010100
00010101
00010110
00010111

...

N
ote: draw

ing address order differently from
 here on!



Placement policy

Memory Hierarchy and Cache 21

00
01
10
11

Index
Cache

S = # slots = 4

Small, fixed number of block slots.

Large, fixed number of block slots.

Memory Mapping:
index(Block ID) = ???Block ID

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111



Placement: direct-mapped

Memory Hierarchy and Cache 22

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Mapping:
index(Block ID) = Block ID mod SBlock ID

Cache

S = # slots = 4

(easy for power-of-2 block sizes...)



Placement: mapping ambiguity?

Memory Hierarchy and Cache 23

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Which block is in slot 2?

Block ID

Cache

S = # slots = 4

Mapping:
index(Block ID) = Block ID mod S



Placement: tags resolve ambiguity

Memory Hierarchy and Cache 24

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Block ID bits not used for index.

Block ID

Tag Data
00
11
01
01

Cache

S

Mapping:
index(Block ID) = Block ID mod S



Address = tag, index, offset

Memory Hierarchy and Cache 25

00010010 full address of individual byte in memory

Block ID
Address bits - Offset bits

Offset within block
log2(block size) = b

# address bits

Block ID bits - Index bits
Tag

log2(# cache slots)
Index

a-bit Address
s bits(a-s-b) bits b bits

OffsetTag Index

Where within a block?

What slot in the cache?
Disambiguates slot contents.



Placement: direct-mapped

Memory Hierarchy and Cache 26

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

(still easy for power-of-2 block sizes...)

Block ID

Cache

Why not this mapping?
index(Block ID) = Block ID / S



Puzzle #1

Cache starts empty.
Access (address, hit/miss) stream:

(0xA, miss), (0xB, hit), (0xC, miss)

What could the block size be?

Memory Hierarchy and Cache 27

block size >= 2 bytes block size < 8 bytes



Placement: direct-mapping conflicts

What happens when accessing
in repeated pattern:
0010, 0110, 0010, 0110, 0010...?

Memory Hierarchy and Cache 28

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Block ID

cache conflict
Every access suffers a miss, 
evicts cache line needed 
by next access.



Placement: set-associative

Memory Hierarchy and Cache 29

0

1

2

3

Set

2-way
4 sets,

2 blocks each

0

1

Set

4-way
2 sets,

4 blocks each

0
1
2
3
4
5
6
7

Set

1-way
8 sets,

1 block each

direct mapped

0

Set

8-way
1 set,

8 blocks

fully associative

Mapping:
index(Block ID) = Block ID mod S

S = # slots in cache
sets

One index per set of block slots.
Store block in any slot within set.

Replacement policy: if set is full, what block should be replaced?
Common: least recently used (LRU)
but hardware may implement “not most recently used”



Example: tag, index, offset? #1

Memory Hierarchy and Cache 30

index(1101) = ____

4-bit Address OffsetTag Index

tag bits ____
set index bits ____
block offset bits____

Direct-mapped
4 slots
2-byte blocks



Example: tag, index, offset? #2

Memory Hierarchy and Cache 31

16-bit Address OffsetTag Index
E-way set-associative
S slots
16-byte blocks

0
1
2
3
4
5
6
7

Set

0

1

2

3

Set

0

1

Set

E = 1-way
S = 8 sets

E = 2-way
S = 4 sets

E = 4-way
S = 2 sets

tag bits ____
set index bits ____
block offset bits ____
index(0x1833) ____

tag bits ____
set index bits ____
block offset bits ____
index(0x1833) ____

tag bits ____
set index bits ____
block offset bits ____
index(0x1833) ____



Replacement policy
If set is full, what block should be replaced?

Common: least recently used (LRU)
(but hardware usually implements “not most recently used”

Another puzzle:  Cache starts empty, uses LRU.
Access (address, hit/miss) stream:
(0xA, miss); (0xB, miss); (0xA, miss)

Memory Hierarchy and Cache 32

12 is not in the same block as 10 12’s block replaced 10’s block

direct-mapped cacheassociativity of cache?



General cache organization (S, E, B)

Memory Hierarchy and Cache 33

E lines per set  (“E-way”)

S sets

set

block/line

0 1 2 B-1tagv

valid bit B = 2b bytes of data per cache line (the data block)

cache capacity:
S x E x B  data bytes
address size:
t + s + b  address bits

Power of 2



Cache read

Memory Hierarchy and Cache 34

E lines per set

S = 2s sets

0 1 2 B-1tag1

valid bit
B = 2b bytes of data per cache line (the data block)

t bits s bits b bits
Address of byte in memory:

tag set
index

block
offset

data begins at this offset

Locate set by index
Hit if any block in set:

is valid; and
has matching tag

Get data at offset in block



Cache read: direct-mapped (E = 1)

Memory Hierarchy and Cache 35

S = 2s sets

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

This cache:
• Block size: 8 bytes
• Associativity: 1 block per set (direct mapped)



Cache read: direct-mapped (E = 1)

Memory Hierarchy and Cache 36

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid?   +

block offset

tag 7654

int (4 Bytes) is here

If no match: old line is evicted and replaced

This cache:
• Block size: 8 bytes
• Associativity: 1 block per set (direct mapped)



Direct-mapped cache practice
12-bit address
16 lines, 4-byte block size
Direct mapped

Memory Hierarchy and Cache 37

11 10 9 8 7 6 5 4 3 2 1 0

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIndex

––––014F
D31B7783113E
15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIndex

Access 0x354
Access 0xA20

Offset bits?  Index bits? Tag bits?



Example #1 (E = 1)

Memory Hierarchy and Cache 38

int sum_array_rows(double a[16][16]){
double sum = 0;

for (int r = 0; r < 16; r++){
for (int c = 0; c < 16; c++){

sum += a[r][c];
}

}
return sum;

}

32 bytes = 4 doubles

Assume: cold (empty) cache
3-bit set index, 5-bit offset

aa...arrr rcc cc000

int sum_array_cols(double a[16][16]){
double sum = 0;

for (int c = 0; c < 16; c++){
for (int r = 0; r < 16; r++){

sum += a[r][c];
}

}
return sum;

}

Locals in registers.
Assume a is aligned such that
&a[r][c] is aa...a rrrr cccc 000

0,0 0,1 0,2 0,3

0,4 0,5 0,6 0,7

0,8 0,9 0,a 0,b

0,c 0,d 0,e 0,f

1,0 1,1 1,2 1,3

1,4 1,5 1,6 1,7

1,8 1,9 1,a 1,b

1,c 1,d 1,e 1,f

32 bytes = 4 doubles

4 misses per row of array
4*16 = 64 misses

every access a miss
16*16 = 256 misses

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

0,0: aa...a000 000 000000,4: aa...a000 001 000001,0: aa...a000 100 000002,0: aa...a001 000 00000



Example #2 (E = 1)

Memory Hierarchy and Cache 39

int dotprod(int x[8], int y[8]) {
int sum = 0;

for (int i = 0; i < 8; i++) {
sum += x[i]*y[i];

}
return sum;

}

x[0] x[1] x[2] x[3]y[0] y[1] y[2] y[3]x[0] x[1] x[2] x[3]y[0] y[1] y[2] y[3]x[0] x[1] x[2] x[3]

if x and y are mutually aligned, 
e.g., 0x00, 0x80

if x and y are mutually unaligned, 
e.g., 0x00, 0xA0

x[0] x[1] x[2] x[3]

y[0] y[1] y[2] y[3]

x[4] x[5] x[6] x[7]

y[4] y[5] y[6] y[7]

block = 16 bytes; 8 sets in cache
How many block offset bits?
How many set index bits?

Address bits: ttt....t sss bbbb
B = 16 = 2b: b=4 offset bits
S =   8 = 2s: s=3 index bits

Addresses as bits
0x00000000: 000....0 000 0000
0x00000080: 000....1 000 0000
0x000000A0: 000....1 010 000016 bytes = 4 ints



Cache read: set-associative (Example: E = 2)

Memory Hierarchy and Cache 40

t bits 0…01 100
Address of int:

find set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

This cache:
• Block size: 8 bytes
• Associativity: 2 blocks per set



0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Cache read: set-associative (Example: E = 2)

Memory Hierarchy and Cache 41

This cache:
• Block size: 8 bytes
• Associativity: 2 blocks per set

t bits 0…01 100
Address of int:

compare both

valid?  + match: yes = hit

block offset

tag 7654

int (4 Bytes) is here

If no match: Evict and replace one line in set.



Example #3 (E = 2)

Memory Hierarchy and Cache 43

float dotprod(float x[8], float y[8]) {
float sum = 0;

for (int i = 0; i < 8; i++) {
sum += x[i]*y[i];

}
return sum;

}

x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3]
If x and y aligned,
e.g. &x[0] = 0, &y[0] = 128,
can still fit both because each set 
has space for two blocks/lines

x[4] x[5] x[6] x[7] y[4] y[5] y[6] y[7]
4 sets

2 blocks/lines per set



Types of Cache Misses

Cold (compulsory) miss

Conflict miss

Capacity miss

Which ones can we mitigate/eliminate? How?

Memory Hierarchy and Cache 44



Writing to cache
Multiple copies of data exist, must be kept in sync.

Write-hit policy
Write-through:
Write-back: needs a dirty bit

Write-miss policy
Write-allocate:
No-write-allocate:

Typical caches:
Write-back + Write-allocate, usually
Write-through + No-write-allocate, occasionally

Memory Hierarchy and Cache 45



Write-back, write-allocate example

Memory Hierarchy and Cache 46

0xCAFECache

Memory

U

0xFACE

0xCAFE

0

T

U

dirty bittag

1. mov $T, %ecx
2. mov $U, %edx
3. mov $0xFEED, (%ecx)

a. Miss on T.

eax = 0xCAFE
ecx = T
edx = U

Cache/memory not involved



Write-back, write-allocate example

Memory Hierarchy and Cache 47

Cache

Memory 0xFACE

0xCAFE

T

U

dirty bit

1. mov $T, %ecx
2. mov $U, %edx
3. mov $0xFEED, (%ecx)

a. Miss on T.
b. Evict U (clean: discard).
c. Fill T (write-allocate).
d. Write T in cache (dirty).

4. mov (%edx), %eax
a. Miss on U.tag

T 00xFACE0xFEED 1

eax = 0xCAFE
ecx = T
edx = U



Write-back, write-allocate example

Memory Hierarchy and Cache 48

0xCAFECache

Memory

U

0xFACE

0xCAFE

0

T

U

dirty bittag

eax = 0xCAFE
ecx = T
edx = U

1. mov $T, %ecx
2. mov $U, %edx
3. mov $0xFEED, (%ecx)

a. Miss on T.
b. Evict U (clean: discard).
c. Fill T (write-allocate).
d. Write T in cache (dirty).

4. mov (%edx), %eax
a. Miss on U.
b. Evict T (dirty: write back).
c. Fill U.
d. Set %eax.

5. DONE.0xFEED

0xCAFE



Example memory hierarchy

Memory Hierarchy and Cache 49

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
256 KB, 8-way, 
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for 
all caches.

slower, but
more likely
to hit

Typical laptop/desktop processor
(c.a. 201_)



(Aside) Software caches
Examples

File system buffer caches, web browser caches, database 
caches, network CDN caches, etc.

Some design differences
Almost always fully-associative

Often use complex replacement policies

Not necessarily constrained to single “block” transfers

Memory Hierarchy and Cache 50



Cache-friendly code
Locality, locality, locality.
Programmer can optimize for cache performance

Data structure layout
Data access patterns

Nested loops
Blocking (see CSAPP 6.5)

All systems favor “cache-friendly code”
Performance is hardware-specific
Generic rules capture most advantages

Keep working set small (temporal locality)
Use small strides (spatial locality)
Focus on inner loop code

Memory Hierarchy and Cache 51


