Floating Point Representation

Fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding
Lessons for programmers
Many more details we will skip (it's a 58 -page standard...)
See CSAPP 2.4 for more detail
https://cs.wellesley.edu/~cs240/

Fractional Binary Numbers

Value
Representation
5 and $3 / 4$
2 and $7 / 8$
47/64

Observations
Shift left =
Shift right =
Numbers of the form $0.111111 \ldots 2$ are...?
Limitations:
Exact representation possible when?

Fractional Binary Numbers

Fixed-Point Representation

Implied binary point.

$b_{7} b_{6} b_{5} b_{4} b_{3}[.] b_{2} b_{1} b_{0}$
$b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$ [.]
range: difference between largest and smallest representable numbers precision: smallest difference between any two representable numbers
fixed point $=$ fixed range, fixed precision

IEEE Floating Point Standard 754
 IEEE = Institute of Electrical and Electronics Engineers

Numerical form:

$$
v_{10}=(-1)^{S} * M * 2^{E}
$$

Sign bit s determines whether number is negative or positive
Significand (mantissa) M usually a fractional value in range [1.0,2.0)
Exponent E weights value by a ($-/+$) power of two
Analogous to scientific notation

Representation:

MSB s = sign bit s
\exp field encodes E (but is not equal to E)
frac field encodes M (but is not equal to M)

Numerically well-behaved, but hard to make fast in hardware

Three kinds of values

1. Normalized: $M=1 . x x x x x$...

As in scientific notation: $0.011 \times 2^{5}=1.1 \times 2^{3}$
Representation advantage?
2. Denormalized, near zero: $M=0 . x x x x x . .$. , smallest E

Evenly space near zero.
3. Special values:
0.0: $\quad s=0 \quad \exp =00 . .0 \quad$ frac $=00 \ldots 0$
$\begin{array}{ll}\text { +inf, -inf: } \\ \text { division by } 0.0\end{array} \quad \exp =11 \ldots 1 \quad$ frac $=00 \ldots 0$
division by 0.0
NaN ("Not a Number"): exp = 11... 1 frac $\neq 00 . . .0$
sqrt(-1), $\infty-\infty, \infty * 0$, etc.

Precisions

Single precision (float): 32 bits

s	\exp	frac	
1 bit 8 bits	23 bits		

Double precision (double): 64 bits

s	\exp		
1 bit	11 bits	52 bits	

Finite representation of infinite range...

Value distribution

Normalized values, with float example

Result:
01000110010000001110010000000000

Value distribution example

Denormalized Values: near zero

"Near zero": exp = 000... 0

Exponent:

$$
E=1+\exp -\text { Bias }=1-\text { Bias not: exp }- \text { Bias }
$$

Significand: leading zero

$$
\begin{array}{r}
M=0 . X X X \ldots X_{2} \\
\quad \text { frac }=\mathbf{x x x} . . . x
\end{array}
$$

Cases:

$$
\begin{aligned}
& \exp =000 \ldots, \text { frac }=000 \ldots 0 \\
& \exp =000 \ldots, \text { frac } \neq 000 \ldots 0
\end{aligned}
$$

Try to represent 3.14, 6-bit example

6-bit IEEE-like format
Bias $=2^{3-1}-1=3$

Value: 3.14
$3.14=11.001000111101011100001010000 \ldots$
$=1.1001000111101011100001010000 \ldots 2 \times 2^{1}$ (normalized form)
Significand:

$$
\begin{array}{ll}
M= & 1.10010001111010111011100001010000 \ldots 2 \\
\text { frac }= & \underline{10}_{2}
\end{array}
$$

Exponent:
$E=1 \quad$ Bias $=3 \quad \exp =4=100_{2}$
Result:
$010010=1.10_{2} \times 2^{1}=3$ next highest?

Floating Point Arithmetic*

double $x=\ldots, y=\ldots$;
double $z=x+y ;$

1. Compute exact result.
2. Fix/Round, roughly:

Adjust M to fit in [1.0, 2.0)...
If $M>=2.0$: shift M right, increment E
If $M<1.0$: shift M left by k, decrement E by k
Overflow to infinity if E is too wide for exp
Round* M if too wide for frac.
Underflow if nearest representable value is 0 .
*complicated...

Lessons for programmers

float \neq real number \neq double

Rounding breaks associativity and other properties.

```
double a = ..., b = ...;
```

N...
if $(a==b) \ldots$
if (abs(a - b) < epsilon) ...

