CS 240

Foundations of Computer Systems

Digital Logic

Gateway to computer science

transistors, gates, circuits, Boolean algebra

Program, Application

Programming Language

Compiler/Interpreter

Operating System

Instruction Set Architecture

Microarchitecture

Digital Logic

Devices (transistors, etc.)
Solid-State Physics

Digital data/computation $=$ Boolean

Boolean value (bit): $\mathbf{0}$ or $\mathbf{1}$ Boolean functions (AND, OR, NOT, ...)
Electronically:
bit = high voltage vs. low voltage

Boolean functions = logic gates, built from transistors

Transistors (more in lab)

If Base voltage is high:
Current may flow freely from Collector to Emitter.

If Base voltage is low:
Current may not flow from Collector to Emitter.

Truth table					
$\mathrm{V}_{\text {in }}$	$\mathrm{V}_{\text {out }}$	in	out	in	out
low	high	0	1	F	T
high	low	1	0	T	F

NOT gate

Digital Logic Gates

Tiny electronic devices that compute basic Boolean functions.

Integrated Circuits (1950s -

Early (first?) transistor
Chip

Small integrated circuit

Five basic gates: define with truth tables

AND	0	1
0		
1		

Boolean Algebra

for combinational logic

A
B

AND = Boolean product

.	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	0
$\mathbf{1}$	0	1

NOT = inverse or complement

0	1
$\mathbf{1}$	0

$$
\begin{array}{ll}
\text { inputs } & =\text { variables } \\
\text { wires } & =\text { expressions } \\
\text { gates } & =\text { operators/functions } \\
\text { circuits } & =\text { functions }
\end{array}
$$

A
B

$O R=$ Boolean sum

+	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	1
$\mathbf{1}$	1	1

$A \quad A$
wire = identity

$\mathbf{0}$	0
$\mathbf{1}$	1

Circuits

Connect inputs and outputs of gates with wires. Crossed wires touch only if there is a dot.

What is the output if $A=1, B=0, C=1$?
What is the truth table of this circuit?
What is an equivalent Boolean expression?

Translation

Connect gates to implement these functions. Check with truth tables. Use a direct translation -- it is straightforward and bidirectional. $F=(A \bar{B}+C) D$
$Z=\bar{W}+(X+\overline{W Y})$

Note on notation: bubble = inverse/complement

Identity law, inverse law

$$
=A=A
$$

Commutativity, Associativity

Idempotent law, Null/Zero law

Note on notation: bubble = inverse/complement

DeMorgan's Law

(double bubble, toil and trouble, in Randy's words...)

$\overline{A+B}$	$\mathbf{0} 1$	
$\mathbf{0}$	1	0
$\mathbf{1}$	0	0

One law, Absorption law

Write truth tables. Do they correspond to simpler circuits?

$=$

II

NAND is universal.

All Boolean functions can be implemented using only NANDs. Build NOT, AND, OR, NOR, using only NAND gates.

XOR: Exclusive OR

Truth table:

Output = 1 if exactly one input $=1$.

Build from earlier gates:

Often used as a one-bit comparator.

Larger gates

Build a 4-input AND gate using any number of 2-input gates.

Circuit simplification

Is there a simpler circuit that performs the same function?

Start with an equivalent Boolean expression, then simplify with algebra.

$$
F(A, B, C)=
$$

Check the answer with a truth table.

Circuit derivation: code detectors

AND gate + NOT gates = code detector, recognizes exactly one input code.

Design a 4-input code detector to output 1 if $A B C D=1001$, and 0 otherwise.

Design a 4-input code detector to accept two codes (ABCD=1001, ABCD=1111) and reject all others. (accept $=1$, reject $=0$)

Circuit derivation: sum-of-products form

logical sum (OR)

of products (AND)
of inputs or their complements (NOT)

Draw the truth table and design a sum-of-products circuit for a 4-input code detector to accept two codes ($\mathrm{ABCD}=1001, A B C D=1111$) and reject all others.
How are the truth table and the sum-of-products circuit related?

Voting machines

A majority circuit outputs 1 if and only if a majority of its inputs equal 1. Design a majority circuit for three inputs. Use a sum of products.

A	B	C	Majority
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Triply redundant computers in spacecraft

- Space program also hastened Integrated Circuits.

Computers

- Manual calculations
- powered all early US space missions.
- Facilitated transition to digital computers.

Mary Jackson

Katherine Johnson

- Supported Mercury, Apollo, Space Shuttle, ...

Dorothy Vaughn

- First black supervisor within NACA
- Early self-taught FORTRAN programmer for NASA move to digital computers.

Early pioneers in reliable computing

Katherine Johnson

- Calculated first US human space flight trajectories
- Mercury, Apollo 11, Space Shuttle, ...
- Reputation for accuracy in manual calculations, verified early code
- Called to verify results of code for launch calculations for first US human in orbit
- Backup calculations helped save Apollo 13
- Presidential Medal of Freedom 2015

Margaret Hamilton

- Led software team for Apollo 11 Guidance Computer, averted mission abort on first moon landing.
- Coined "software engineering", developed techniques for correctness and reliability.
- Presidential Medal of Freedom 2016

