CS240 Supplemental Practice - Gates

1) For the following circuit, answer the following questions

a. Write out its truth table:

\mathbf{A}	\mathbf{B}	\mathbf{C}	Out
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

b. What is the equivalent, unsimplified Boolean expression? In other words, what is the Boolean algebra translation of the circuit above?
$(\mathrm{A}+\mathrm{B})^{\prime}+\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right) \mathrm{C}$
c. What is the sum of products expression of the truth table?
$A^{\prime} B^{\prime} C+A^{\prime} B^{\prime} C^{\prime}$
d. Simplify your answer from part b using Boolean algebra laws. As a sanity check, you should be able to simplify your expression from part c and arrive at the same answer.
$(\mathrm{A}+\mathrm{B})^{\prime}+\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right) \mathrm{C}-$ Original equation from part b
A'B' + (A'B')C - DeMorgan's Law
$A^{\prime} B^{\prime}$ - Absorption
$A^{\prime} B^{\prime} C+A^{\prime} B^{\prime} C^{\prime}-$ Original equation from part c $A^{\prime} B^{\prime}$ - Combining

Extra practice: answer the same questions above with this circuit

a. Write out its truth table:

\mathbf{A}	\mathbf{B}	\mathbf{C}	Out
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

b. What is the equivalent, unsimplified Boolean expression? In other words, what is the Boolean algebra translation of the circuit above?
$(\mathrm{AB})^{\prime}+\mathrm{B}^{\prime} \mathrm{C}$
c. What is the sum of products expression of the truth table?
$\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}$
d. Simplify your answer from part b using Boolean algebra laws. As a sanity check, you should be able to simplify your expression from part c and arrive at the same answer.
(AB)' $+\mathrm{B}^{\prime} \mathrm{C}-$ Original equation from part b
$A^{\prime}+B^{\prime}+\mathrm{B}^{\prime} \mathrm{C}$ - DeMorgan's
$A^{\prime}+B^{\prime}$ - Absorption
$\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB} \mathrm{A}^{\prime} \mathrm{C}-$ Original equation from part c
$\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}-$ Absorption
$A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime} C^{\prime}+A B^{\prime} C-$ Absorption
$A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}-$ Absorption
$A^{\prime}+A B^{\prime}-$ Absorption
$\left(A^{\prime}+A\right)\left(A^{\prime}+B^{\prime}\right)-$ Distributive

$$
\begin{aligned}
& \text { (1)(A' + B') - Inverse } \\
& A^{\prime}+\mathrm{B}^{\prime} \text { - Identity }
\end{aligned}
$$

2) For the Boolean expression: $\left(A^{\prime} A+\left(B C^{\prime}\right)^{\prime}\right)^{\prime}+B$
a. Draw the unsimplified circuit:

b. Write out its truth table:

\mathbf{A}	\mathbf{B}	\mathbf{C}	Out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

c. Simplify or shorten the expression step-by-step using Boolean algebra laws, and write the corresponding laws next to each step
$\left(\mathrm{A}^{\prime} \mathrm{A}+\left(\mathrm{BC}^{\prime}\right)^{\prime}\right)^{\prime}+\mathrm{B}-$ Original equation
$\left(0+\left(\mathrm{BC}^{\prime}\right)^{\prime}\right){ }^{\prime}+\mathrm{B}$ - Inverse
$\left.\left(\left(\mathrm{BC}^{\prime}\right)^{\prime}\right)\right)^{\prime}+\mathrm{B}$ - Identity
(BC^{\prime}) $+\mathrm{B}-$ Negation
B - Absorption

Extra practice: answer the questions above with this Boolean algebra expression $(A+A B C ') B$
a. Draw the unsimplified circuit:

b. Write out its truth table:

\mathbf{A}	\mathbf{B}	\mathbf{C}	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

c. Simplify or shorten the expression step-by-step using Boolean algebra laws, and write the corresponding laws next to each step
$(A+A B C ') B-$ Original Equation
AB - Absorption

