About how many hours did you spend actively working on this assignment? \qquad

1. Reconstructing Memories

1a. Draw a 256×8 RAM based on two 256×4 RAMs. Your logic will go inside the box.

1b. Draw a $64 \mathrm{~K} \times 8$ RAM based on one $16 \mathrm{~K} \times 32$ RAM.

2. Taking Control

Control Unit Truth Table

Instruction Name	Opcode (4 bits)	Reg Write (1 bit)	ALU Op $_{[3: 0]}$ (4 bits)	Mem Store (1 bit)	Mem (1 bit)	Branch (1 bit)	Jump (3a) (1 bit)
LW							
SW							
ADD							
SUB							
AND							
OR							
BEQ							
JMP (3a)							
NAND (4b)							

3. Jumping into the Unknown

3a. Draw JMP logic and fill the JMP row in the control unit truth table above.

3b i. Execute this code, assuming R2 holds 5 and R3 holds 2. Indicate the final register values when the code reaches HALT.

0: AND R2, R2, R4
2: AND R3, R3, R5
4: BEQ R5, RO, 3
6: SUB R5, R1, R5
8: ADD R4, R4, R4
A: JMP 2
C: HALT \# Stops execution.

3b ii. Single line of C code equivalent to this code.

$$
\mathrm{R} 4=
$$

\qquad

4. Instruction Not Missing

4a. The instruction NOT Rs, Rd can be emulated by running the following instructions instead:

R2: \qquad R3: \qquad R4: \qquad R5: \qquad

4b-c. NAND/NOT encoding and definition

Assembly	Meaning	Opcode $[15: 12]$	Rs $[11: 8]$	Rt $[7: 4]$	Rd $[3: 0]$
(4b) NAND Rs,Rt,Rd	$R[d] \leftarrow \sim(R s \& R t)$				
(4c) NOT Rs,Rd	$R[d] \leftarrow \sim R s$				

5. Points Affixed and Afloat in a C of Numbers

(Check the assignment to see whether Part 5 is required.)

5a. Fixed point numbers Sea Type	Minimum (base ten)	Maximum (base ten)	iii. Adder (It fits! Reuse provided parts.)
i. signed fixed8ths char			
ii. signed fixed32nds char			

5b. Floating point conversion.

6-bit floating-point encoding	110101	100001	011100	000011	010010	111101
Decimal number represented						

