Computer Science 240
 Binary Operations
 Assignment for Lab 2

Submit hardcopy of completed exercises at the beginning of lab. Also, submit a hardcopy of your answers from lecture Assignment Zero for the "Make Nothing from Something" section (solutions to some simple bit puzzles).

For each of the following problems, perform addition on the given values (assume two's complement representation). Indicate whether there is a carry-out or an overflow for each addition.

For the first 2 calculations, assume 16-bit representation. Do the calculation using the binary values.
Then, convert the result to hexadecimal notation. To convert, divide the 16 binary digits of the result into groups of 4 , and translate each group to the corresponding hexadecimal value. Note that if there is a carry-out, that is the $17^{\text {th }}$ bit, and it is not used in result or in the hexadecimal translation!

1. $\quad+\quad 11111111111111111_{2} \quad$ Carry-Out? \quad Overflow?

Result in binary :
Result in hexadecimal:

Carry-Out? Overflow?
2. $\begin{array}{r}0111111110000000_{2} \\ +\quad 01111111100110012 \\ \hline\end{array}$

Result in binary :
Result in hexadecimal:

Now, assume 32-bit representation, using hexadecimal notation, and specify result in hexadecimal.
Carry-Out? Overflow?
3. $\begin{array}{r}\text { A AF F 9014 } \\ +\quad \text { A AE 3 CD } 1216\end{array}$

Result in hexadecimal:

4.
$+\quad 6$ FAA327816
+

Result in hexadecimal:

