

CS240 Laboratory 4

ALU and Sequential/Memory Circuits

Arithmetic Logic Unit
An ALU is a combinational circuit used to perform all the arithmetic and
logical operations for a computer processor.

A simple 1-bit ALU can be built using the basic components you have learned
about: AND gate, OR gate, 1-bit adder, and multiplexer:

The Operation (a 2-bit value), selects which operation should be produced as
the Result:

Operation bits Result
 0 0 A AND B
 0 1 A OR B
 1 0 A + B

By adding some additional control inputs, it is possible to produce additional
functions with the ALU.

Invert A is used to complement the input A.

Negate B/Carry in used to complement input B for logical operations, and as a
carry-in when addition is performed.

Basic Operations

• add (operation = add)
• sub (negate B/Carry in = 1, operation = ADD)
• AND (operation = AND)
• OR (operation = OR)
• NOR (invertA=1, negateB=1, operation = AND)

Control Inputs Result
invertA negateB Operation _
 0 0 0 0 a AND b
 0 0 0 1 a OR b
 0 0 1 0 a + b
 0 1 1 0 a – b
 1 1 0 0 a NOR b

A 4-bit ALU can be built from 4 1-bit ALUs in the same way
that a 4-bit adder can be built from 1-bit adders:

How do you produce the Sign, Overflow, and Zero bits?

Basic Memory Circuit

Latch Single-bit memory, level-triggered

SR (Set Reset) Latch

 S R Q Q’
 0 0 Qp Qp’ remember
 0 1 0 reset (clear)
 1 0 1 set
 1 1 unpredictable

What does unpredictable mean? Notice in a NOR gate,
if either input = 1 to a gate, its output = 0 (1 is a
deterministic input):

 A B (A+B)’
 0 0 1
 0 1 0
 1 0 0
 1 1 0

So, although you wouldn’t usually try to set and
reset at the same time (it doesn’t make sense), if
you did, Q and Q’ will both be 0 (which is not
unpredictable).

However, when you go back to the remember state
(S=R=0), Q and Q’ will not stay at 0 0. The circuit
passes through one of either the set or reset state
on its way back to the remember state, and Q and Q'
change to the complement of one another.

S

R Q

Q'

Since the final state depends on which transitional
state was sensed on the way back to remember, you
cannot predict whether the final state of Q will be 1
or 0.

Clocked SR Latch

To synchronize when the latch changes state, add a clock
input:

In a clocked latch, whenever the clock is high, the
outputs/state of the latch can change.

D Latch
The D latch is another 1-bit clocked memory device. It
avoids the unpredictable state S=R=1 of the SR latch,
because a single input D determines the next state of the
circuit.

 D Q
 0 0
 1 1

Q gets the value of D when the CK is high.

The D latch circuit can be abstracted to the following:

D Flip-Flop
Similar to a latch, a flip-flop is also a 1-bit memory.

Rather than allowing change of state any time the clock is
high (as for the latch), in the flip-flop, the change of
state occurs on a clock edge.

The falling edge of the clock is the exact transition from
high-to-low, rather than whenever the clock is high (the
negative edges are marked in red below):

Internally, a flip-flop is actually made from 2 latches.

The first latch is controlled directly by the clock, but
the second latch is controlled by the inverse of the clock:

So, the input D will not be passed from the first latch to
the second latch until the clock goes low.

Once the clock is low, a new value on D will not store into
the first latch. Overall, the flip-flop can change value
only exactly at the transition of the clock from high to
low.

T Flip-Flop

Another type of flip-flop which avoids the unpredictable state is a T flip-
flop. It only has a clock input, and simply toggles to the opposite of the current
state when it is clocked because the values of the current outputs are tied back
into the inputs for the next state.

The T latch, upon which the flip-flop is based, looks like this:

The T flip-flop can be abstracted to the following device (the reset input allows
you to initialize the device to a value of 0):

In lab 2, we investigated the operation of a combinational circuit called a
binary counter, which produces a 4-bit value which represents the sequence of
binary numbers from 0 to 15.

At the time, we did not explain the details of the underlying circuit of the
binary counter, because it uses flip-flops, which we had not yet discussed.

The binary counter uses 4 interconnected T flip-flops:

 The output of the first T flip-flop, QA, serves as the clock to QB. So, QB only
changes when QA falls from 1 to 0 (on the negative edge). QB therefore only
changes half as frequently as QA.

A similar relationship exists for QB to QC, and QC to QD.

The pattern of outputs then represents the binary numbers, since that is exactly
how the digits change as the numbers increment:

Memory Devices using Flip-flops

Register - n-bit memory, uses n flip-flops, and a shared
clock input. Shown below is a 4-bit register:

Registers are used to represent single n-bit value in a
Computer Processing Unit (CPU).

Register File

The CPU contains a set of registers to hold values which
are being used to execute an instruction.

This set of registers is called a register file.

The register file contains multiple registers (although
typically a limited number) and so is a larger memory than
a single register.

However, in addition to the set of registers, the register
file also contains circuits (multiplexers and decoders)
which select which registers to read from or write to for a
particular instruction.

A block diagram for a register file containing 4 registers
is shown below.

Notice the two 4x1 multiplexers on the right: these select
two registers from the set of 4 to read from at any given
time. The 2x4 decoder on the left selects a single
register to be written to with a new value at any given
time.

Note: a bold black line with /2 through it would indicate
that there are actually 2 wires/bits represented by the
line

Although a register file contains multiple registers, it is
still a fairly small memory, and is a special purpose
circuit for the CPU.

Below is a circuit using a register file that represents
the data path for the CPU we will be studying:

RAM memory

RAM (Random Access Memory) memories are general purpose,
and can be used to store a large set of values (which can
represent either instructions in a program or data).

A RAM memory contains multiple flip-flops, organized into
n-bit words, where each word can be accessed through use of
an address. Another way to think of a memory is as an
array of n-bit values. You access the value you want by
specifying its index, which we refer to as an address.

In the diagram below, there are 4 addresses (specified as
00, 01, 10, and 11). Each address contains 3 bits of data
(a flip-flop would be used to store each data bit of 1 or
0).

In addition to the flip-flops, a memory also contains
multiplexer and decoder circuits to select which value is
being accessed:

A 256x16 RAM chip contain 256 16-bit values.

 To read one of the stored values, you
specify the address of the value on the A
inputs, and the data at that address is read
from the D0 outputs.

To write a new value to the memory:
• Specify the new value on the DI inputs.

• Specify the address where the new value
will be stored on the A inputs.

• Activate the /WE control signal (which is
basically the clock input to the flip-
flops in the device).

