CS 240 Arch Assignment [72 points]

ID Number:

About how many hours did you spend actively working on this assignment? _____

Q1. Flop-Flip-Flopping [10 points] Time spent on Q1:

Q2 [15 points] Reconstructing Memories Time spent on Q2: ______
2a [5 points] Time spent on Q2a: _____

Draw a 256×8 RAM that's implemented by two 256×4 RAMs. Your logic will go inside the box.

Draw a 64K×8 RAM that's implemented by one 16K×32 RAM.

Q3. A Loopy Program [14 points]	Time spent on Q3:
---------------------------------	-------------------

3a [10 points] Execution Table for P1 (should have 18 rows)

PC	Instruction	State Changes					
			1				
3b [1.5]	Final Register Content	s R2:	R3:		R4:		
3c [2.5] Python, Java, or Javascript statements equivalent to P1:							

Q4. Taking Control [8 points] Time spent on Q4:

Control Unit Truth Table

Instruction Name	Opcode _[3:0] (4 bits)	Reg Write (1 bit)	ALU Op _[3:0] (4 bits)	Mem Store (1 bit)	Mem (1 bit)	Branch (1 bit)	Jump (5a(ii) [1]) (1 bit)
LW							
SW							
ADD							
SUB							
AND							
OR							
BEQ							
JMP (5a(iii) [2])							
NAND (6b(ii)[1])							

Q5. Jumping into the Unknown [15 points] *Time spent on Q5:* ______
5a(i) [10]. Below, add Jump output from Control Unit and modify logic to use it to implement JMP instruction.

holds 5 and R3 holds 3. Indicate the final register values when the code reaches HALT. 0: AND R2, R2, R4 2: AND R3, R3, R5 4: BEQ R5, R0, 3 6: SUB R5, R1, R5 8: ADD R4, R4, R4 A: JMP 2 C: HALT # Stops execution. R2: R3: R4: R5:		Q6. Instruction Not Missing [10 points] Time on Q6: 6a [4] The instruction NOT Rs,Rd can be emulated by running the following instructions instead. (Also briefly justify why these instructions work.)						
6b-c. NAND/NOT enco					ocode	- 16-bit Rs	encoding	
Assembly Meaning		m ig	[15:12]			[11:8]		[3:0]
6b(i) [3]			Rt)					
6c [2]								
7. Points Affixed and Af	loat in a C	of Numbers	(OPTIC	ONAL P	ROBLEM	!)	•	•
7a. Fixed point numbers Sea Type Minimum (base ten			Max	imum e ten)	iii. Adder (It fits! Reuse provided parts.)			
1. signed fixed8ths char								
li.signed fixed32nds char								
7b. Floating point convers	sion.							
6-bit floating-point encoding	110101	100001	011	.100	00001	.1	010010	111101
Decimal number represented								

5b(ii) [2] Single line of C code equivalent to this code.

5b(i) [3] Execute this code, assuming R2