ID Number:

About how many hours did you spend actively working on this assignment? \qquad

Q1 Decoding a T-Shirt [10 points] Time spent on Q1: \qquad
1a [3 points] Message in base of flag

1b [7 points] Message in binary bits of the flag. Write down the bits and show your decoding details

Q2 Decoding a Unicode Message [12 points] Time spent on Q2: \qquad
2a [10 points] Show how to decode the Unicode message in the hex bytes 49 E2 99 A5 CF 8021 to Unicode code points. Write the message bits corresponding to the hex bytes, distinguish header bits from content bits, and indicate the number of bytes in each code point. Show the code points determined by the content bits.

2b [2 points]. What would the message look like in a Unicode enabled application?

| Q3 Universal Muxification of Gates [14 points] Time spent on Q3: | | |
| :--- | :--- | :--- | :--- |
| 3a NOT A (one 2:1 mux) [1] | 3b. A AND B (one 2:1 mux) [1.5] | 3c. A OR B (one 2:1 mux) [1.5] |

4.. Switching Network [8 points] Time spent on Q4: \qquad

Q5 Karnaugh Maps [10 points] Time spent on Q5:
5a. Karnaugh Map [8 points]

5b. Minimal sum of products expression [2 points]

Q6 vALUe [29 points] Time spent on Q6: \qquad Draw circuits on next page, text answers here.

6a(i-iv) Condition Flags [5 points]

(draw circuits on next page)
6b Result of the ALU when Invert $A=1$, Negate B
= 1, and Operation ID = 10. [4 points]

6c(i) [3 points] Three examples of A, B, where sign bit of $\mathrm{A}-\mathrm{B}$ gives the correct result for $\mathrm{A}<\mathrm{B}$.

A	B	$A-B$	$\operatorname{sign}(A-B)$	Is $A<B ?$

6c(ii) [1 point] For what range of values for ($\mathrm{A}-\mathrm{B}$) (before modular arithmetic) does the approach work correctly?

6c(iii) [2 points] Two examples of A, B, where sign bit of $A-B$ gives the incorrect result for $A<B$.

A	B	A - B	$\operatorname{sign}(A-B)$	Is $A<B$?

6d [3 points] Show your Equals Flag design on the next page and indicate the values of Invert, Negate B, and Operation for the operator $\mathrm{A}==\mathrm{B}$.
6e. [3 points] Argue that signed overflow can't affect the Equals Flag.
(i) If $\mathrm{A}=\mathrm{B}$:
(ii) If $A \neq B$:

6a(i-iv) Condition Flags, 6c(v) Less-Than Flag, 6d Equals Flag. Label outputs clearly.

Q7 Base64 Encoding [Optional for Fun] Time spent on Q7: \qquad
Show how to encode the hex bytes 49 E2 99 A5 CF 8021 as Base64 digits:

Base64 representation of the message:

