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How does execution time grow with SIZE?

int array[SIZE];
fillArrayRandomly (array) ;

int s = 0;

for (int 1 = 0; 1 < 200000; 1++) {
for (int j = 0; j < SIZE; J++) {
]

s += arrayl[]]; t
| TIME

SIZE
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Processor-memory bottleneck

Processor performance

doubled about _
every 18 months Bus bandwidth
evolved much slower _
Main
CPU | Reg Cache
T Memory
Bandwidth: 256 bytes/cycle Bandwidth: 2 Bytes/cycle
Latency: 1-few cycles Latency: 100 cycles

™~ Example /

Solution: caches



Cache

English:
n. a hidden storage space for provisions, weapons, or treasures
v. to store away in hiding for future use

Computer Science:

n. a computer memory with short access time used to store
frequently or recently used instructions or data

v. to store [data/instructions] temporarily for later quick retrieval

Also used more broadly in CS: software caches, file caches, etc.



General cache mechanics

CPU Block: unit of data
in cache and memory.
/////// (a.k.a. line)
// Smaller, faster, more expensive.
Cache 8 9 14 3 Stores subset of memory blocks.

(lines)

Data is moved
in block units

Memory 0 1 2 3 Larger, slower, cheaper.
4 5 6 7 Partitioned into blocks (lines).
8 9 10 11
12 13 14 15




Cache hit

Cache

Memory

CPU
Request: 14
8 9 14 3
0) 1 2 3
4 5 6 7/
8 9 10 11
12 13 14 15

1. Request data in block b.

2. Cache hit:
Block b is in cache.



Cache miss

Cache

Memory

CPU
Request: 12
8 12 14 3
12 Request: 12
0 1 2 3
4 5 6 7
8 9 || 10 11
12 13 14 15

Placement Policy:
where to put block in cache

. Request data in block b.

. Cache miss:

block is not in cache

. Cache eviction:

Evict a block to make room,
maybe store to memory.

. Cache fill:

Fetch block from memory,
store in cache.

Replacement Policy:
which block to evict



Locality: why caches work

Programs tend to use data and instructions at addresses near
or equal to those they have used recently.

Temporal locality:
Recently referenced items are likely C )

to be referenced again in the near future. block
Spatial locality:
ltems with nearby addresses are likely ﬂ
to be referenced close together in time.
block

How do caches exploit temporal and spatial locality?



Locality #1

sum = 0; What is stored in memory?
for (1 = 0; 1 < n; 1i++) {
sum += a[i];

}

return sum;

Data:

Instructions:



Locality #2

row-major M x N 2D array in C

}
}

return sum;

int sum array rows (int a[M][NJf'{
int sum = 0;

for (int 1 =
for (int j
sum += a|

i < M;
J < N;

a[0][0]  a[0][1]  a[0][2]
a[1]l0]  a[1][1]  a[1][2]
{ | a[210] a[211] al2][2]




Locality #3

row-major M x N 2D array in C

int sum array cols(int a[M][N]ﬁ'{
int sum = 0;
, , , , a[0][0]  a[0][1]  a[O][2]  a[O][3]
for (int J = 0; J < N; J++) { a[1][0]  a[1][1]  a[1][2]  a[1][3] -
for (int 1 = 0; 1 < M; 1++) { [a[2]00 a[2][1] a[2][2] a[2](3]
sum += ali][]];
}
}

return sum;




Locality #4

int sum array 3d(int a[M][N][N]) {
int sum = 0;

for (int 1 = 0; 1 < N; 1++) {

for (int 7 = 0; j < N; J++
for (int k = 0;
sum += alk][1][J];

}
}
}

return sum;

What is "wrong" with this code?
How can it be fixed?



Cost of cache misses

Miss cost could be 100 x hit cost.

99% hits could be twice as good as 97%. How?

Assume cache hit time of 1 cycle, miss penalty of 100 cycles

Mean access time:\ /

97% hits: (0.97 * 1 cycle) + (0.03 * 100 cycles) = 3.97 cycles
99% hits: (0.93 * 1 cycle) + (0.01 * 100 cycles) = 1.93 cycles

\/

hit/miss rates



Memory hierarchy

Why does it work?

explicitly
program-
controlled

Registers

small, fast,

<1KB,
power-hungry, 0.25-0.5ns,
expensive 20K MBps

L1 cache (SRAM, on-chip)
<16MB, 0.5-25ns access,
5K-15K MBps

L2 cache
(SRAM, on-chip)

L3 cache
(SRAM, off-chip)

main memory (DRAM)
<~64MB, 80-250ns, 1K-5K MBps

large, slow, : ;
power-efficient, persistent storage(hard disk, flash, over network, cloud, ¢

cheap GB/TB, >5M ns, 20-150 MBps



Cache performance metrics

Miss Rate

Fraction of memory accesses to data not in cache (misses / accesses)
Typically: 3% - 10% for L1; maybe < 1% for L2, depending on size, etc.

Hit Time
Time to find and deliver a block in the cache to the processor.
Typically: 1 - 2 clock cycles for L1; 5 - 20 clock cycles for L2

Miss Penalty

Additional time required on cache miss = main memory access time
Typically 50 - 200 cycles for L2 (trend: increasing!)



Cache organization

Block
Fixed-size unit of data in memory/cache

Placement Policy

Where in the cache should a given block be stored?
= direct-mapped, set associative

Replacement Policy

What if there is no room in the cache for requested data?
= |east recently used, most recently used

Write Policy

When should writes update lower levels of memory hierarchy?
= write back, write through, write allocate, no write allocate



(byte)

address Memory
Blocks

Divide address space into fixed-size aligned blocks.

power of 2
Example: block size = 8 00001000
full byte address
00010010
/ \ 00010000
00010001
Block ID offset within block 00010011
ite - : 00010100
address bits - offset bits log,(block size) 00010101
00010110
00010111
00011000

remember withinSameBlock? (Pointers Lab) Memory Hierarchy and Cache

block

block

block

block

jUO 949 WoJ) AjJud.idy4Ip 19pI0 SSRIppe Suimelp 910N
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Placement policy

Memory Mapping:

Block 1D index(Block ID) = ???
0000
0001
0010
0011

0100 Cache
0101 Index

0110 00
0111 01
1000 10

1001 11
1010
1011 Small, fixed number of block slots.
1100
1101
1110
1111

-S=#slots=4

Large, fixed number of block slots.

Memory Hierarchy and Cache 20



Placement: direct-mapped

Memory Mapping:
B'°°O"O:)DO index(Block ID) = Block ID mod S
0001 (easy for power-of-2 block sizes...)
0010
0011
0100 Cache
0101 Index
0110 00
0111 01
1000 10 -S =# SIOtS =4
1001 11
1010
1011
1100
1101
1110
1111

Memory Hierarchy and Cache 21



Placement: mapping ambiguity?

Memory Mapping:

Blocok():)Do index(Block ID) = Block ID mod S
0001
0010
0011
0100 Cache
0101 Index

0110

0111
1000

1001
1010
1011
1100
1101 Which block is in slot 2?
1110
1111

-S = #slots=4

Memory Hierarchy and Cache 22



Placement: tags resolve ambiguity

Memory Mapping:
Block 1D index(Block ID) = Block ID mod S
0000
0001
0010
0011
0100 Cache
0101 Index Tag Data
0110 00 00
0111 01 11
1000 10 01
1001 11 01
1010
1011
1100
1101 . .
1110 Block ID bits not used for index.
1111

Memory Hierarchy and Cache 23



Address = tag, index, offset

Disambiguates slot contents.

a-bit Address

Block ID bits - Index bits

What slot in the cache?

/ Where within a block?

\

Index

Offset

(a-s-b) bits

s bits

log,(# cache slots)

Tag Index

b bits

00010010 full byte address

7\

Block ID Offset within block

Address bits - Offset bits

~_

# address bits

log,(block size) =

Memory Hierarchy and Cache
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Placement: direct-nmapped

Memory Why not this mapping?
Block ID index(Block ID) = Block ID /'S
[ 1
gggg (still easy for power-of-2 block sizes...)
0010
0011
0100 Cache
0101 Index
0111 01
1000 10
1001 11
1010
1011
1100
11010 [
1110

1111

Memory Hierarchy and Cache 25



Puzzle #1

Cache starts empty.
Access (address, hit/miss) stream:

(10, miss), (11, hit), (12, miss)

What could the block size be?



Placement: direct-mapping conflicts

Block ID

0000 What happens when accessing
0001
0010 in repeated pattern:

0011 0010, 0110, 0010, 0110, 0010...?
0100 Index

0101
0110 00
0111 01
1000 10

1001 1 cache conflict

1011 Every access suffers a miss,

1100 evicts cache line needed

1101 by next access.
1110

1111

Memory Hierarchy and Cache 27



Placement: set-associative

One index per set of block slots.
Store block in any slot within set.

1-way
8 sets,
1 block each

Set
0
1
2
3
4
5
6
7

direct mapped

2-way

4 sets,
2 blocks each

Set

o b
1 ..............................................
p 2 N
B3 o

Replacement policy: if set is full, what block should be replaced?
Common: least recently used (LRU)

Mapping:

4-way
2 sets,

4 blocks each
Set

sets

S = # 3tedS in cache

index(Block ID) = Block ID mod S

8-way
1 set,
8 blocks

fully associative

but hardware may implement “not most recently used”




Example: tag, index, offset? #1

4. bit Address Tag Index | Offset
Direct-mapped tag bits
4 slots set index bits
2-byte blocks block offset bits

index(1101) =



Example: tag, index, offset? #2

E-way set-associative
S slots
16-byte blocks

E=1-way
S = 8 sets
Set
0
1
2
3
4
5
6
7
tag bits

set index bits
block offset bits
index(0x1833)

Index | Offset

1 6-bit Address Tag
E =2-way
S =4 sets
Set

P P

1 .......................................................

2

3 o

tag bits

set index bits
block offset bits
index(0x1833)

E =4-way
S =2 sets
Set
R FE—
N
tag bits

set index bits
block offset bits
index(0x1833)



Replacement policy

If set is full, what block should be replaced?

Common: least recently used (LRU)
(but hardware usually implements “not most recently used”)

Another puzzle: Cache starts empty, uses LRU.

Access (address, hit/miss) stream:
(10, miss); (12, miss); (10, miss)

associativity of cache?




General cache organization (S, E, B)

E lines per set (“E-way”)

Ve A N\ set
r —
Power of 2 eooo ]
\ \ block/line
S sets< oo
\ STt cache capacity:
Sx E x B data bytes
address size:
t+s+b address bits
Vv tag OQ1]2] - e B-1
\ valid bit ~~— —~ —

B = 2P bytes of data per cache line (the data block)



Cache read

E lines per set

Locate set by index
Hit if any block in set:
is valid; and
has matching tag

Y Get data at offset in block

Address of byte in memory:

t bits

s bits | b bits

tag

— A A

set block
index offset

_A
-
(
TR
TR
S=Zssets< XE X
0000000000000 0000000000000
eooe
\.
1 tag O]J1]2] cc°-" B-1
valid bit ~~ ~ —

data begins at this offset

B = 2b bytes of data per cache line (the data block)



Cache read: direct-mapped (E = 1)

This cache:

* Block size: 8 bytes

e Associativity: 1 block per set (direct mapped)

S = 2°sets <

-

Address of int:
Y tag Oj1]2]3|41}1516]|7 :
t bits 0..01 | 100
Y tag Oj1]2]3|41)15]16]|7 -
find set
Y tag Oj1]2]3|41)1516]|7

Vv

tag

0

1

2

3

4

5

6




Cache read: direct-mapped (E = 1)

This cache:

* Block size: 8 bytes

e Associativity: 1 block per set (direct mapped)

valid? + match?: yes = hit

Address of int:

t bits

0..01

100

v Itag

0

1

2

3

If no match: old line is evicted and replaced

int (4 Bytes) is here

block offset




Direct-mapped cache practice

12-bit address Access 0x354
16 lines, 4-byte block size
Direct mapped Access 0xA20

Offset bits? Index bits? Tag bits?
11 10 9 8 7 6 5 4 3 2 1 0

Index Tag Valid BO B1 B2 B3 Index Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -

IViemory Hierarchy and Cache




Example #1 (E = 1)

Locals in registers.
Assume a is aligned such that
&a[r] [c]lis aa...a rrrr cccc 000

Assume: cold (empty) cache
3-bit set index, 5-bit offset

ad.

..arrr rcc cc000

2,0:aa...a000 000 00000

int sum array rows (double a[l6][16]) {

double sum = 0;

for (int r = 0; r < 16; r++){
for (int e¢ = 0;
sum += alr][c];
}
}

return sum;

c < 16; ct++) {

0,0i01:02i0,3

04:05i06i0,7

0,8

0,9{0,ai0,b

0,di 0,ei0f

/I O,C
1,0§1,111,2} 1,3

1,411,501,611,7

1,819} 1,a} 1,b

LecilditefLf

A\

J/

int
double sum = 0;

for (int ¢ = 0; c < 16; c++) {
for (int r = 0O;
sum += alr][ec];
}
}

return sum;

sum_array cols(double a[l6][16]) {

r < 16; r++){

Y

32 bytes = 4 doubles

4 misses per row of array
4*16 = 64 misses

32 bytes = 4 doubles

every access a miss

16*16 = 256 misses
AL

'd N\

a0ia1ia2ia3

—>13,0:3,1!3,2

3,3




block = 16 bytes; 8 sets in cache
Exa m ple #2 ( E = 1) How many block offset bits?

How many set index bits?

int dotprod(int x[8], int yI[8]) { Address bits:
int sum = 0; ‘
B =
for (int 1 = 0; 1 < 8; 1i++) { S =
} sum == x[1]7yld]; Addresses as bits
return sum; 0Ox00000000:
} 0x00000080:
16 bytes = 4 ints OxO000000AO:
A
e ~N -
¥[0] | x[1]; ¥12]  ¥[3] x[0{ x[1]{x[2]}x[3]
o x[4]} x(5]; x[6]} x(7]
if x and y are mutually aligned, if xand y are mutually unaligned, y[o]; y[1]§ y[2]i vI3]
e.g., 0x00, 0x80 e.g., 0x00, OxAO e

y[41y[S]; y6]} y[7]




Cache read: set-associative (Example: E = 2)

This cache:
* Block size: 8 bytes

Address of int:

* Associativity: 2 blocks per set RIS 001 | 100
v tag ol1l213|4]|5]6]7 v tag 0 5|67
vl | tag | lo]1l2]3]a]s]6]7 vl | g | |o 5|67 find set
v tag ol1l21314]|5]|6]7 v tag 0 5|67

Y tag 0111213415617 Vv tag 0




Cache read: set-associative (Example: E = 2)

This cache:
* Block size: 8 bytes

* Associativity: 2 blocks per set

Address of int:

valid? + | match: yes = hit

compare both

t bits

0..01

100

v tag_|01234

617 Y tag

int (4 Bytes) is here

If no match: Evict and replace one line in set.

block offset




Example #3 (E = 2)

float sum = 0;

for (int i1 = 0; 1 < 8; i++)
sum += x[1]*y[1];
}

return sum;

{

float dotprod(float x[8], float y[8]) {

If x and y aligned,

e.g. &x[0] =0, &y[0] = 128,

can still fit both because each set
has space for two blocks/lines

2 blocks/lines per set

x[0]

=X[1]§

X[Z]EXB]

yIOlly[1llyi2]iyi3]

x[4]}

x[6]§x[7]

y[4]= y[S]E

V[G]E y[7]

4 sets



Types of Cache Misses

Cold (compulsory) miss
Conflict miss
Capacity miss

Which ones can we mitigate/eliminate? How?



Writing to cache

Multiple copies of data exist, must be kept in sync.

Write-hit policy
Write-through:
Write-back: needs a dirty bit

Write-miss policy
Write-allocate:
No-write-allocate:

Typical caches:
Write-back + Write-allocate, usually
Write-through + No-write-allocate, occasionally



Write-back, write-allocate example

eax =
ecx=T
edx=U
Cache U OXCAFE 0
/ /
tag dirty bit
Memory T OxFACE
U OxCAFE

Cache/memory not involved

1. mov ST, %ecx 7

2. mov SU, %edx

3. mov SOXFEED, (%ecx)
a. MissonT.



Write-back, write-allocate example

eax = 1. mov ST, %ecx
ecx=T 2. mov SU, %edx
edx = U 3. mov SOXFEED, (%ecx)

a. MissonT.

b. Evict U (clean: discard).
Cache T OXFEED 1 c. Fill T (write-allocate).
A A d. Write T in cache (dirty).
/ / 4. mov (%edx), %eax
tag dirty bit a. Misson U.
Memory T OxFACE

U OxCAFE




Write-back, write-allocate example

Cache

Memory

eax = OxCAFE
ecx=T
edx=U
U OxCAFE 0
/ /
tag dirty bit
T] | OXFEED
U OxCAFE

et

mov ST, %ecx

mov SU, %edx

mov SOXFEED, (%ecx)
a. MissonT.
b. Evict U (clean: discard).
c. Fill T (write-allocate).

d. Write T in cache (dirty).
mov (%edx), %eax

a. Misson U.
b. Evict T (dirty: write back).
c. Fill U.

d. Set %eax.
DONE.



Example memory hierarchy

Typical laptop/desktop processor

Processor package (c.a.201_)

______________________________________________________________________

ss: 30-40 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

' Core 0 Core 3 ' L1i-cache and d-cache:
! R R 32 KB, 8-way,

! €8s €65 Access: 4 cycles

| u L1 L1 11 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
Access: 11 cycles
L2 unified cache L2 unified cache L3 unified cache:

8 MB, 16-way,

slower, but
Main memory more likely
to hit




(Aside) Software caches

Examples

File system buffer caches, web browser caches, database
caches, network CDN caches, etc.

Some design differences

Almost always fully-associative

Often use complex replacement policies

Not necessarily constrained to single “block” transfers



Cache-friendly code

Locality, locality, locality.

Programmer can optimize for cache performance
Data structure layout
Data access patterns

Nested loops
Blocking (see CSAPP 6.5)

All systems favor “cache-friendly code”
Performance is hardware-specific

Generic rules capture most advantages
Keep working set small (temporal locality)
Use small strides (spatial locality)
Focus on inner loop code



