WELLESLEY
CS 240
Foundations of Computer Systems ix;

Memory Hierarchy
and Cache

Memory hierarchy
Cache basics
Locality
Cache organization
Cache-aware programming

https://cs.wellesley.edu/~cs240/ Memory Hierarchy and Cache 1

https://cs.wellesley.edu/~cs240/

Software

Hardware

Program, Application

Programming Language
Compiler/Interpreter

Operating System

Instruction Set Architecture

Digital Logic

Devices (transistors, etc.)

SOIid'State Phy§ig§ry Hierarchy and Cache

2

How does execution time grow with SIZE?

int array[SIZE];
fillArrayRandomly (array) ;

int s = 0;

for (int 1 = 0; 1 < 200000; 1++) {
for (int j = 0; j < SIZE; J++) {
]

s += arrayl[]]; t
| TIME

SIZE

Reality

Time

45

40

35

30

25

20

15

10

Memory Hierarchy and Cache

4

Processor-memory bottleneck

Processor performance

doubled about _
every 18 months Bus bandwidth
evolved much slower _
Main
CPU | Reg Cache
T Memory
Bandwidth: 256 bytes/cycle Bandwidth: 2 Bytes/cycle
Latency: 1-few cycles Latency: 100 cycles

™~ Example /

Solution: caches

Cache

English:
n. a hidden storage space for provisions, weapons, or treasures
v. to store away in hiding for future use

Computer Science:

n. a computer memory with short access time used to store
frequently or recently used instructions or data

v. to store [data/instructions] temporarily for later quick retrieval

Also used more broadly in CS: software caches, file caches, etc.

General cache mechanics

CPU Block: unit of data
in cache and memory.
/////// (a.k.a. line)
// Smaller, faster, more expensive.
Cache 8 9 14 3 Stores subset of memory blocks.

(lines)

Data is moved
in block units

Memory 0 1 2 3 Larger, slower, cheaper.
4 5 6 7 Partitioned into blocks (lines).
8 9 10 11
12 13 14 15

Cache hit

Cache

Memory

CPU
Request: 14
8 9 14 3
0) 1 2 3
4 5 6 7/
8 9 10 11
12 13 14 15

1. Request data in block b.

2. Cache hit:
Block b is in cache.

Cache miss

Cache

Memory

CPU
Request: 12
8 12 14 3
12 Request: 12
0 1 2 3
4 5 6 7
8 9 || 10 11
12 13 14 15

Placement Policy:
where to put block in cache

. Request data in block b.

. Cache miss:

block is not in cache

. Cache eviction:

Evict a block to make room,
maybe store to memory.

. Cache fill:

Fetch block from memory,
store in cache.

Replacement Policy:
which block to evict

Locality: why caches work

Programs tend to use data and instructions at addresses near
or equal to those they have used recently.

Temporal locality:
Recently referenced items are likely C)

to be referenced again in the near future. block
Spatial locality:
ltems with nearby addresses are likely ﬂ
to be referenced close together in time.
block

How do caches exploit temporal and spatial locality?

Locality #1

sum = 0; What is stored in memory?
for (1 = 0; 1 < n; 1i++) {
sum += a[i];

}

return sum;

Data:

Instructions:

Locality #2

row-major M x N 2D array in C

}
}

return sum;

int sum array rows (int a[M][NJf'{
int sum = 0;

for (int 1 =
for (int j
sum += a|

i < M;
J < N;

a[0][0] a[0][1] a[0][2]
a[1]l0] a[1][1] a[1][2]
{ | a[210] a[211] al2][2]

Locality #3

row-major M x N 2D array in C

int sum array cols(int a[M][N]ﬁ'{
int sum = 0;
, , , , a[0][0] a[0][1] a[O][2] a[O][3]
for (int J = 0; J < N; J++) { a[1][0] a[1][1] a[1][2] a[1][3] -
for (int 1 = 0; 1 < M; 1++) { [a[2]00 a[2][1] a[2][2] a[2](3]
sum += ali][]];
}
}

return sum;

Locality #4

int sum array 3d(int a[M][N][N]) {
int sum = 0;

for (int 1 = 0; 1 < N; 1++) {

for (int 7 = 0; j < N; J++
for (int k = 0;
sum += alk][1][J];

}
}
}

return sum;

What is "wrong" with this code?
How can it be fixed?

Cost of cache misses

Miss cost could be 100 x hit cost.

99% hits could be twice as good as 97%. How?

Assume cache hit time of 1 cycle, miss penalty of 100 cycles

Mean access time:\ /

97% hits: (0.97 * 1 cycle) + (0.03 * 100 cycles) = 3.97 cycles
99% hits: (0.93 * 1 cycle) + (0.01 * 100 cycles) = 1.93 cycles

\/

hit/miss rates

Memory hierarchy

Why does it work?

explicitly
program-
controlled

Registers

small, fast,

<1KB,
power-hungry, 0.25-0.5ns,
expensive 20K MBps

L1 cache (SRAM, on-chip)
<16MB, 0.5-25ns access,
5K-15K MBps

L2 cache
(SRAM, on-chip)

L3 cache
(SRAM, off-chip)

main memory (DRAM)
<~64MB, 80-250ns, 1K-5K MBps

large, slow, : ;
power-efficient, persistent storage(hard disk, flash, over network, cloud, ¢

cheap GB/TB, >5M ns, 20-150 MBps

Cache performance metrics

Miss Rate

Fraction of memory accesses to data not in cache (misses / accesses)
Typically: 3% - 10% for L1; maybe < 1% for L2, depending on size, etc.

Hit Time
Time to find and deliver a block in the cache to the processor.
Typically: 1 - 2 clock cycles for L1; 5 - 20 clock cycles for L2

Miss Penalty

Additional time required on cache miss = main memory access time
Typically 50 - 200 cycles for L2 (trend: increasing!)

Cache organization

Block
Fixed-size unit of data in memory/cache

Placement Policy

Where in the cache should a given block be stored?
= direct-mapped, set associative

Replacement Policy

What if there is no room in the cache for requested data?
= |east recently used, most recently used

Write Policy

When should writes update lower levels of memory hierarchy?
= write back, write through, write allocate, no write allocate

(byte)

address Memory
Blocks

Divide address space into fixed-size aligned blocks.

power of 2
Example: block size = 8 00001000
full byte address
00010010
/ \ 00010000
00010001
Block ID offset within block 00010011
ite - : 00010100
address bits - offset bits log,(block size) 00010101
00010110
00010111
00011000

remember withinSameBlock? (Pointers Lab) Memory Hierarchy and Cache

block

block

block

block

jUO 949 WoJ) AjJud.idy4Ip 19pI0 SSRIppe Suimelp 910N

19

Placement policy

Memory Mapping:

Block 1D index(Block ID) = ???
0000
0001
0010
0011

0100 Cache
0101 Index

0110 00
0111 01
1000 10

1001 11
1010
1011 Small, fixed number of block slots.
1100
1101
1110
1111

-S=#slots=4

Large, fixed number of block slots.

Memory Hierarchy and Cache 20

Placement: direct-mapped

Memory Mapping:
B'°°O"O:)DO index(Block ID) = Block ID mod S
0001 (easy for power-of-2 block sizes...)
0010
0011
0100 Cache
0101 Index
0110 00
0111 01
1000 10 -S =# SIOtS =4
1001 11
1010
1011
1100
1101
1110
1111

Memory Hierarchy and Cache 21

Placement: mapping ambiguity?

Memory Mapping:

Blocok():)Do index(Block ID) = Block ID mod S
0001
0010
0011
0100 Cache
0101 Index

0110

0111
1000

1001
1010
1011
1100
1101 Which block is in slot 2?
1110
1111

-S = #slots=4

Memory Hierarchy and Cache 22

Placement: tags resolve ambiguity

Memory Mapping:
Block 1D index(Block ID) = Block ID mod S
0000
0001
0010
0011
0100 Cache
0101 Index Tag Data
0110 00 00
0111 01 11
1000 10 01
1001 11 01
1010
1011
1100
1101 . .
1110 Block ID bits not used for index.
1111

Memory Hierarchy and Cache 23

Address = tag, index, offset

Disambiguates slot contents.

a-bit Address

Block ID bits - Index bits

What slot in the cache?

/ Where within a block?

\

Index

Offset

(a-s-b) bits

s bits

log,(# cache slots)

Tag Index

b bits

00010010 full byte address

7\

Block ID Offset within block

Address bits - Offset bits

~_

address bits

log,(block size) =

Memory Hierarchy and Cache

24

Placement: direct-nmapped

Memory Why not this mapping?
Block ID index(Block ID) = Block ID /'S
[1
gggg (still easy for power-of-2 block sizes...)
0010
0011
0100 Cache
0101 Index
0111 01
1000 10
1001 11
1010
1011
1100
11010 [
1110

1111

Memory Hierarchy and Cache 25

Puzzle #1

Cache starts empty.
Access (address, hit/miss) stream:

(10, miss), (11, hit), (12, miss)

What could the block size be?

Placement: direct-mapping conflicts

Block ID

0000 What happens when accessing
0001
0010 in repeated pattern:

0011 0010, 0110, 0010, 0110, 0010...?
0100 Index

0101
0110 00
0111 01
1000 10

1001 1 cache conflict

1011 Every access suffers a miss,

1100 evicts cache line needed

1101 by next access.
1110

1111

Memory Hierarchy and Cache 27

Placement: set-associative

One index per set of block slots.
Store block in any slot within set.

1-way
8 sets,
1 block each

Set
0
1
2
3
4
5
6
7

direct mapped

2-way

4 sets,
2 blocks each

Set

o b
1 ..
p 2 N
B3 o

Replacement policy: if set is full, what block should be replaced?
Common: least recently used (LRU)

Mapping:

4-way
2 sets,

4 blocks each
Set

sets

S = # 3tedS in cache

index(Block ID) = Block ID mod S

8-way
1 set,
8 blocks

fully associative

but hardware may implement “not most recently used”

Example: tag, index, offset? #1

4. bit Address Tag Index | Offset
Direct-mapped tag bits
4 slots set index bits
2-byte blocks block offset bits

index(1101) =

Example: tag, index, offset? #2

E-way set-associative
S slots
16-byte blocks

E=1-way
S = 8 sets
Set
0
1
2
3
4
5
6
7
tag bits

set index bits
block offset bits
index(0x1833)

Index | Offset

1 6-bit Address Tag
E =2-way
S =4 sets
Set

P P

1 ...

2

3 o

tag bits

set index bits
block offset bits
index(0x1833)

E =4-way
S =2 sets
Set
R FE—
N
tag bits

set index bits
block offset bits
index(0x1833)

Replacement policy

If set is full, what block should be replaced?

Common: least recently used (LRU)
(but hardware usually implements “not most recently used”)

Another puzzle: Cache starts empty, uses LRU.

Access (address, hit/miss) stream:
(10, miss); (12, miss); (10, miss)

associativity of cache?

General cache organization (S, E, B)

E lines per set (“E-way”)

Ve A N\ set
r —
Power of 2 eooo]
\ \ block/line
S sets< oo
\ STt cache capacity:
Sx E x B data bytes
address size:
t+s+b address bits
Vv tag OQ1]2] - e B-1
\ valid bit ~~— —~ —

B = 2P bytes of data per cache line (the data block)

Cache read

E lines per set

Locate set by index
Hit if any block in set:
is valid; and
has matching tag

Y Get data at offset in block

Address of byte in memory:

t bits

s bits | b bits

tag

— A A

set block
index offset

_A
-
(
TR
TR
S=Zssets< XE X
0000000000000 0000000000000
eooe
\.
1 tag O]J1]2] cc°-" B-1
valid bit ~~ ~ —

data begins at this offset

B = 2b bytes of data per cache line (the data block)

Cache read: direct-mapped (E = 1)

This cache:

* Block size: 8 bytes

e Associativity: 1 block per set (direct mapped)

S = 2°sets <

-

Address of int:
Y tag Oj1]2]3|41}1516]|7 :
t bits 0..01 | 100
Y tag Oj1]2]3|41)15]16]|7 -
find set
Y tag Oj1]2]3|41)1516]|7

Vv

tag

0

1

2

3

4

5

6

Cache read: direct-mapped (E = 1)

This cache:

* Block size: 8 bytes

e Associativity: 1 block per set (direct mapped)

valid? + match?: yes = hit

Address of int:

t bits

0..01

100

v Itag

0

1

2

3

If no match: old line is evicted and replaced

int (4 Bytes) is here

block offset

Direct-mapped cache practice

12-bit address Access 0x354
16 lines, 4-byte block size
Direct mapped Access 0xA20

Offset bits? Index bits? Tag bits?
11 10 9 8 7 6 5 4 3 2 1 0

Index Tag Valid BO B1 B2 B3 Index Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -

IViemory Hierarchy and Cache

Example #1 (E = 1)

Locals in registers.
Assume a is aligned such that
&a[r] [c]lis aa...a rrrr cccc 000

Assume: cold (empty) cache
3-bit set index, 5-bit offset

ad.

..arrr rcc cc000

2,0:aa...a000 000 00000

int sum array rows (double a[l6][16]) {

double sum = 0;

for (int r = 0; r < 16; r++){
for (int e¢ = 0;
sum += alr][c];
}
}

return sum;

c < 16; ct++) {

0,0i01:02i0,3

04:05i06i0,7

0,8

0,9{0,ai0,b

0,di 0,ei0f

/I O,C
1,0§1,111,2} 1,3

1,411,501,611,7

1,819} 1,a} 1,b

LecilditefLf

A\

J/

int
double sum = 0;

for (int ¢ = 0; c < 16; c++) {
for (int r = 0O;
sum += alr][ec];
}
}

return sum;

sum_array cols(double a[l6][16]) {

r < 16; r++){

Y

32 bytes = 4 doubles

4 misses per row of array
4*16 = 64 misses

32 bytes = 4 doubles

every access a miss

16*16 = 256 misses
AL

'd N\

a0ia1ia2ia3

—>13,0:3,1!3,2

3,3

block = 16 bytes; 8 sets in cache
Exa m ple #2 (E = 1) How many block offset bits?

How many set index bits?

int dotprod(int x[8], int yI[8]) { Address bits:
int sum = 0; ‘
B =
for (int 1 = 0; 1 < 8; 1i++) { S =
} sum == x[1]7yld]; Addresses as bits
return sum; 0Ox00000000:
} 0x00000080:
16 bytes = 4 ints OxO000000AO:
A
e ~N -
¥[0] | x[1]; ¥12] ¥[3] x[0{ x[1]{x[2]}x[3]
o x[4]} x(5]; x[6]} x(7]
if x and y are mutually aligned, if xand y are mutually unaligned, y[o]; y[1]§ y[2]i vI3]
e.g., 0x00, 0x80 e.g., 0x00, OxAO e

y[41y[S]; y6]} y[7]

Cache read: set-associative (Example: E = 2)

This cache:
* Block size: 8 bytes

Address of int:

* Associativity: 2 blocks per set RIS 001 | 100
v tag ol1l213|4]|5]6]7 v tag 0 5|67
vl | tag | lo]1l2]3]a]s]6]7 vl | g | |o 5|67 find set
v tag ol1l21314]|5]|6]7 v tag 0 5|67

Y tag 0111213415617 Vv tag 0

Cache read: set-associative (Example: E = 2)

This cache:
* Block size: 8 bytes

* Associativity: 2 blocks per set

Address of int:

valid? + | match: yes = hit

compare both

t bits

0..01

100

v tag_|01234

617 Y tag

int (4 Bytes) is here

If no match: Evict and replace one line in set.

block offset

Example #3 (E = 2)

float sum = 0;

for (int i1 = 0; 1 < 8; i++)
sum += x[1]*y[1];
}

return sum;

{

float dotprod(float x[8], float y[8]) {

If x and y aligned,

e.g. &x[0] =0, &y[0] = 128,

can still fit both because each set
has space for two blocks/lines

2 blocks/lines per set

x[0]

=X[1]§

X[Z]EXB]

yIOlly[1llyi2]iyi3]

x[4]}

x[6]§x[7]

y[4]= y[S]E

V[G]E y[7]

4 sets

Types of Cache Misses

Cold (compulsory) miss
Conflict miss
Capacity miss

Which ones can we mitigate/eliminate? How?

Writing to cache

Multiple copies of data exist, must be kept in sync.

Write-hit policy
Write-through:
Write-back: needs a dirty bit

Write-miss policy
Write-allocate:
No-write-allocate:

Typical caches:
Write-back + Write-allocate, usually
Write-through + No-write-allocate, occasionally

Write-back, write-allocate example

eax =
ecx=T
edx=U
Cache U OXCAFE 0
/ /
tag dirty bit
Memory T OxFACE
U OxCAFE

Cache/memory not involved

1. mov ST, %ecx 7

2. mov SU, %edx

3. mov SOXFEED, (%ecx)
a. MissonT.

Write-back, write-allocate example

eax = 1. mov ST, %ecx
ecx=T 2. mov SU, %edx
edx = U 3. mov SOXFEED, (%ecx)

a. MissonT.

b. Evict U (clean: discard).
Cache T OXFEED 1 c. Fill T (write-allocate).
A A d. Write T in cache (dirty).
/ / 4. mov (%edx), %eax
tag dirty bit a. Misson U.
Memory T OxFACE

U OxCAFE

Write-back, write-allocate example

Cache

Memory

eax = OxCAFE
ecx=T
edx=U
U OxCAFE 0
/ /
tag dirty bit
T] | OXFEED
U OxCAFE

et

mov ST, %ecx

mov SU, %edx

mov SOXFEED, (%ecx)
a. MissonT.
b. Evict U (clean: discard).
c. Fill T (write-allocate).

d. Write T in cache (dirty).
mov (%edx), %eax

a. Misson U.
b. Evict T (dirty: write back).
c. Fill U.

d. Set %eax.
DONE.

Example memory hierarchy

Typical laptop/desktop processor

Processor package (c.a.201_)

__

ss: 30-40 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

' Core 0 Core 3 ' L1i-cache and d-cache:
! R R 32 KB, 8-way,

! €8s €65 Access: 4 cycles

| u L1 L1 11 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
Access: 11 cycles
L2 unified cache L2 unified cache L3 unified cache:

8 MB, 16-way,

slower, but
Main memory more likely
to hit

(Aside) Software caches

Examples

File system buffer caches, web browser caches, database
caches, network CDN caches, etc.

Some design differences

Almost always fully-associative

Often use complex replacement policies

Not necessarily constrained to single “block” transfers

Cache-friendly code

Locality, locality, locality.

Programmer can optimize for cache performance
Data structure layout
Data access patterns

Nested loops
Blocking (see CSAPP 6.5)

All systems favor “cache-friendly code”
Performance is hardware-specific

Generic rules capture most advantages
Keep working set small (temporal locality)
Use small strides (spatial locality)
Focus on inner loop code

