

Floating Point Representation

Fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding
Lessons for programmers

Many more details we will skip (it's a 58-page standard...) See CSAPP 2.4 for more detail.

https://cs.wellesley.edu/~cs240/

Floating Point 1

Floating Point 3

Fractional Binary Numbers

$$\sum_{k=-i}^{i} b_k \cdot 2^k$$

Floating Point 2

Fractional Binary Numbers

Value

Representation

5 and 3/4 2 and 7/8 47/64

Observations

Shift left =

Shift right =

Numbers of the form 0.111111...2 are...?

Limitations:

Exact representation possible when?

 $1/3 = 0.333333..._{10} = 0.$

Fixed-Point Representation

Implied binary point.

$$b_7 b_6 b_5 b_4 b_3$$
 [.] $b_2 b_1 b_0$
 $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$ [.]

range: difference between largest and smallest representable numbers

precision: smallest difference between any two representable numbers

fixed point = fixed range, fixed precision

IEEE Floating Point Standard 754 IEEE = Institute of Electrical and Electronics Engineers

Numerical form:

$$V_{10} = (-1)^{s} * M * 2^{E}$$

Sign bit s determines whether number is negative or positive

Significand (mantissa) *M* usually a fractional value in range [1.0,2.0)

Exponent E weights value by a (-/+) power of two

Analogous to scientific notation

Representation:

MSB s = sign bit s **exp** field encodes **E** (but is *not equal* to E) frac field encodes M (but is not equal to M)

Numerically well-behaved, but hard to make fast in hardware

Floating Point 5

Floating Point 7

Precisions

Single precision (float): 32 bits

Double precision (double): 64 bits

Finite representation of infinite range...

Floating Point 6

Three kinds of values

$$V = (-1)^{S} * M * 2^{E}$$
 s exp frac

1. Normalized: M = 1.xxxxx...

As in scientific notation: $0.011 \times 2^5 = 1.1 \times 2^3$ Representation advantage?

2. **Denormalized**, near zero: M = 0.xxxxx..., smallest EEvenly space near zero.

3. Special values:

```
0.0:
              s = 0
                        exp = 00...0
                                            frac = 00...0
+inf. -inf:
                        exp = 11...1
                                            frac = 00...0
division by 0.0
NaN ("Not a Number"): exp = 11...1 frac \neq 00...0
\operatorname{sqrt}(-1), \infty - \infty, \infty * 0, etc.
```

Value distribution

Floating Point 8

Normalized values, with float example

Denormalized Values: near zero

"Near zero": exp = 000...0

Exponent:

$$E = 1 + \exp - \text{Bias} = 1 - \text{Bias}$$
 not: $\exp - \text{Bias}$

Significand: leading zero

$$M = 0.xxx...x_2$$

frac = xxx...x

Cases:

Floating Point 9

$$exp = 000...0, frac = 000...0$$
 0.0, -0.0
 $exp = 000...0, frac \neq 000...0$

Value distribution example

6-bit IEEE-like format s exp frac

Bias = $2^{3-1} - 1 = 3$ 1 3 2

Try to represent 3.14, 6-bit example

6-bit IEEE-like format

Bias = $2^{3-1} - 1 = 3$ s exp frac

1 3 2

Value: 3.14;

3.14 = 11.0010 0011 1101 0111 0000 1010 000...

= 1.1001 0001 1110 1011 1000 0101 0000... 2 x 2¹ (normalized form)

Significand:

M = 1.10010001111011110111100001010000... 2
frac= 102

Exponent:

E = 1 Bias = 3 exp = $4 = 100_2$

Result:

0 100 10 = $1.10_2 \times 2^1 = 3$ next highest?

Floating Point 12

Floating Point 10

Floating Point Arithmetic*

$$V = (-1)^S * M * 2^E$$
 s exp frac

double
$$x = \ldots$$
, $y = \ldots$; double $z = x + y$;

- 1. Compute exact result.
- 2. Fix/Round, roughly:

Adjust *M* to fit in [1.0, 2.0)...

If M >= 2.0: shift M right, increment E

If M < 1.0: shift M left by k, decrement E by k

Overflow to infinity if *E* is too wide for **exp**

Round* M if too wide for frac.

Underflow if nearest representable value is 0.

... *complicated...

Floating Point 14

Lessons for programmers

$$V = (-1)^{S} * M * 2^{E}$$
 s exp frac

float ≠ real number ≠ double
Rounding breaks associativity and other properties.

Floating Point 15