WELLESLEY
CS 240
Foundations of Computer Systems ix;

Dynamic Memory Allocation
in the Heap

Explicit allocators
Manual memory management

C: implementing malloc and free

https://cs.wellesley.edu/~cs240/ Dynamic Memory Allocation 1

https://cs.wellesley.edu/~cs240/

Heap Allocation

Addr
2N-11

=)

7

Stack|
v

%
|

Heap

Statics

Literals

Text

Perm Contents Managed by Initialized
RW Procedure context Compiler Run-time
Dvnamic Programmer,
RW y malloc/free, Run-time
data structures
new/GC
Global variables/ Compiler/
RW .)
static data structures Assembler/Linker Sl
. . Compiler/
R String literals Assembler/Linker Startup
il
X Instructions ST Startup

Assembler/Linker

Dynamic Memory Allocation

2

Allocator basics

Pages too coarse-grained for allocating individual objects.
Instead: flexible-sized, word-aligned blocks.

Free word
\ J \ J
¥ Allocated word
Allocated block Free block
(4 words) (3 words)

pointer to newly allocated block
of at least that size number of contiguous bytes required

¥ ¥

vold* malloc(size t size);
/ pointer to allocated block to free
vold free (vold* ptr);

4

Dynamic Memory Allocation 3

Example (s4-bit words)

pl = malloc(32) ;

p2 = malloc (40);

p3 = malloc(48);

free (p2) ;

p4 = malloc(16) ;

Allocator goals: malloc/free

1. Programmer does not decide locations of distinct objects.
Programmer decides: what size, when needed, when no longer needed

2. Fast allocation.

mallocs/second or bytes malloc'd/second

3. High memory utilization.

Most of heap contains necessary program data.
Little wasted space.

Enemy: fragmentation — unused memory that cannot be allocated.

Internal fragmentation

payload smaller than block

block
A

payload

\ - /

fragmentation

Causes
metadata
alignment
policy decisions

External fragmentation (sa-bit words)

Total free space large enough,
but no contiguous free block large enough

pl = malloc(32);

p2 = malloc (40);

p3 = malloc(48);

free (p2);

p4 = malloc (48);

Depends on the pattern of future requests.

Implementation issues

1. Determine how much to free given just a pointer.
2. Keep track of free blocks.
3. Pick a block to allocate.

4. Choose what do with extra space when allocating a
structure that is smaller than the free block used.

5. Make a freed block available for future reuse.

Knowing how much to free

Keep length of block in header {ord preceding block

Takes extra space!

pO

1
438

p0 = malloc(32);

/TN

block size metadata data payload

free (p0) ;

Keeping track of free blocks

Method 1: Implicit free list of all blocks using length

Method 2: Explicit free list of free blocks using pointers

40| & 32 48 16

Method 3: Seglist
Different free lists for different size blocks

More methods that we will skip...

Implicit free list: block format

Block metadata:

1. Block size

2. Allocation status
Store in one header word.

1 word

AN

—

— Steal LSB for status flag.

block size

d

— LSB = 1: allocated
LSB = 0: free

payload

(application data,

when allocated)

optional padding

16-byte aligned sizes have
4 zeroes in low-order bits
00000000
00010000
00100000
00110000

Implicit free list: heap layout

Block Header

Special end-heap word

(metadata) Alignment may Lp ks like head P :

Start of Block| Block cause internal OOKS fIke header o
heap size |allocated? fragmentation zero-size allocate block.

\ \/ \
16|0 32|1 640 32|1 0|1

|

Initial heap
word cannot
be part of
block.

Free word

Allocated word

Payloads start at 16-byte (2-word) alighment.

Pointers returned by malloc are to payloads, not headers
Block sizes are multiples of 16 bytes.

Allocated word wasted

Implicit free list: finding a free block

First fit:
Search list from beginning, choose first free block that fits

Next fit:
Do first-fit starting where previous search finished

Best fit:
Search the list, choose the best free block: fits, with fewest bytes left over

Implicit free list: allocating a free block

Allocated space S free space.
Use it all? Split it up?

;;

/ \ ,

16 16

p = malloc(24);

f
P

Block Splitting

Now showing allocation status flag implicitly with shading.

Dynamic Memory Allocation 14

Implicit free list: freeing an allocated block

-~

% ‘\v P S ”
16 32 16 16
t
P
free (p) ; Clear allocated flag.
//‘\y”—_\\\/"\
16 32 16 |16

malloc (40) ; x External fragmentation!

Enough space, not one block.

Dynamic Memory Allocation 15

Coalescing free blocks

3; §2 ‘1/6 16
t
P
free (p) Coalesce with following free block.
I
32 48 16
\ logically gone

Coalesce with preceding free block?

[Knuth73]

Bidirectional coalescing: boundary tags

Header —— block size a

payload
(application data,
when allocated)

optional padding

B
oundary tag block size a
(footer)
,/’ \\v/’ \\V,” \\\\A
32 32 32 32 48 48 32 32
w LS - g
S > - S -~ S ~ s

Constant-time O(1) coalescing: 4 cases

ml

ml

ml

ml

n+m2

m2

m2

n+m2

n+ml

n+ml+m2

n+ml

m2

ml 1

ml 1

n 1
Freed Block

n 1

m2 1

m2 1

ml 0

ml 0

n 1
Freed Block

n 1

m2 1

m2 1

m2

ml 1
ml 1
n 1
Freed Block
n 1
m2 0
m2 0
ml 0
ml 0
n 1
Freed Block
n 1
m2 0
m2 0

n+ml+m2

Improved block format
for implicit free lists

Allocated block:

prev block this block
allocated?

allocated?

Free block:

block size |p E

block size

block size

1

block size

payload

block size

block size

block size

Minimum block size for implicit free list?

Update headers of 2 blocks on each malloc/free.

payload

block size

payload

Dynamic Memory Allocation

19

Summary: implicit free lists

Implementation: simple

Allocate: O(blocks in heap)
Free:

Memory utilization: depends on placement policy

Not widely used in practice
some special purpose applications

Splitting, boundary tags, coalescing are general to all allocators.

Explicit free list: block format

Allocated block: Free block:

block size a block size a

next pointer

payload
(application data,
when allocated)

prev pointer

optional padding

block size a block size a

(same as implicit free list)

Explicit list of free blocks rather than implicit list of all blocks.

Explicit free list: list vs. memory order

Abstractly: doubly-linked lists -

> > E—
— A < B < c

Previous

Concretely: free list blocks in any memory order

//
A Next \“ 8

32 p 32/32 3248 ¢ | o 48|32 3232 & 0 32
Previous

List Order # Memory Order

Explicit free list: allocating a free block

Before

After (with splitting)

>

= malloc(...)

Dynamic Memory Allocation 23

Explicit free list: freeing a block

Insertion policy: Where in the free list do you add a freed block?

LIFO (last-in-first-out) policy
Pro: simple and constant time

Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy
Con: linear-time search to insert freed blocks

Pro: studies suggest fragmentation is lower than LIFO

LIFO Example: 4 cases of freed block neighbor status.

Freeing with LIFO policy:
between allocated blocks

Before

free (@)

Head LI '®)

Insert the freed block at head of free list.

After

Dynamic Memory Allocation 25

Freeing with LIFO policy:
between free and allocated

Before

Head

free (@)
»

]

I

]

1 I’

Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the head of the free list.

After

Head H

v

; :

Could be on either or both sides... Dynamic Memory Allocation 26

Freeing with LIFO policy:
between allocated and free

Before free (@)

]

I

Head I

t

Splice out successor block, coalesce both

memory blocks and

insert the new block at the head of the free list.

After

) @

T . R

v

Dynamic Memory Allocation 27

Freeing with LIFO policy:
between free blocks

Before

kT
i% I% 1

®
Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the head of the list.

After

Head H

Dynamic Memory Allocation

Summary: Explicit Free Lists

Implementation: fairly simple
Allocate: O(blocks) vs. O(all blocks)
Free: O(1) vs. O(1)

Memory utilization:
depends on placement policy
larger minimum block size (next/prev) vs. implicit list

Used widely in practice, often with more optimizations.

Splitting, boundary tags, coalescing are general to all allocators.

Seglist allocators

Each size bracket has its own free list

16 > > > —

48-64 > —

80-inf

Faster best-fit allocation...

Summary: allocator policies

All policies offer trade-offs in fragmentation and throughput.

Placement policy:
First-fit, next-fit, best-fit, etc.
Seglists approximate best-fit in low time

Splitting policy:

Always? Sometimes? Size bound?

Coalescing policy:
Immediate vs. deferred

Improved block format

for explicit free lists ,
block size p

Allocated block: Free block:

block size

block size |p|1 block size |p|0 next pointer

next pointer prev pointer

prev pointer

payload block size

block size

block size

payload

Minimum block size for explicit free list? block size

payload

Update headers of 2 blocks on each malloc/free.

Dynamic Memory Allocation

32

