

Karnaugh Maps and Ambiguity

The minimal sum-of-products expression for a Karnaugh map may not be unique.

Ambiguity is introduced when an arbitrary choice needs to be made.
An example of ambiguity is this Karnaugh map. Give four different minimal sum-ofproduct expressions for this map

Goal for next 2 weeks: Simple Processor

Decoders

Decodes input number, asserts corresponding output.
n-bit input (an unsigned number)
2^{n} outputs
Built with code detectors.

Combinational Logic 4-11

Multiplexers

Select one of several inputs as output.

Build a 2-to-1 MUX from gates

If $S=0$, then $F=D_{0}$.
If $S=1$, then $F=D_{1}$.

1. Construct the truth table.
2. Build the circuit.

MUX + voltage source = truth table

8-to-1 MUX

Costume idea: MUX OX

Buses and Logic Arrays

A bus is a collection of data lines treated as a single logical signal.
= fixed-width value

Array of logic elements applies same operation to each bit in a bus.
= bitwise operator

