
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240
Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

The Plan

Plan 1

https://cs.wellesley.edu/~cs240/

Devices (transistors, etc.)

Solid-State Physics

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application

Welcome to

CS 240:
Foundations of

Computer
Systems

Plan 2

Today

What is CS 240?

Why take CS 240?

How does CS 240 work?

Dive into foundations of computer hardware.

Plan 3

2
3

1

4

CS 111, 230, 231, 235, 251:
• What can a program do?
• How can a program solve a problem?
• How do you structure a program?
• How do you know it is correct or efficient?
• How hard is it to solve a problem?
• How is computation expressed?
• What does a program mean?
• ...

A BIG question is missing…

Plan 4

CS 240: How do computers work?

Plan 5

?
circuitboard image: CC-BY-NC-SA ifixit.com

1

Devices (transistors, etc.)

Solid-State Physics

H
ar

dw
ar

e

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Algorithm, Data Structure, ApplicationCS 111, 230,
231, 235, 251

CS 240

So
ft

w
ar

e

Plan 6

Compiler/Interpreter

Devices (transistors, etc.)

Solid-State Physics

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Algorithm, Data Structure, Application

Big Idea:
Abstraction

interface
implementation

Layers manage
complexity.

Plan 7

Big Idea: Abstraction
with a few recurring subplots

Simple, general interfaces:
Hide complexity of efficient implementation.
Make higher-level systems easy to build.
But they are not perfect.

Representation of data and programs

Translation of data and programs

Control flow within/across programs

Plan 8

0s and 1s,
electricity

compilers,
assemblers,

decoders

branches,
procedures,

OS

Bus

Persistent
Storage

Network USB Display …Input/
Output

Modern Computer Organization
1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

Stores program
code + data

during execution.

Memory

Executes
instructions.

Processor

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Plan 19

Modern Computer Organization
1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

Stores program
code + data

during execution.

Memory

Executes
instructions.

Processor

Processor repeats:
1. fetch instruction
2. fetch data used by instruction
3. execute instruction on data
4. store result or choose next instruction

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Plan 20

Physical implementation
of instructions and resources.

H
ar

dw
ar

e

Desired computation
represented as instructions.

Hardware/Software Interface

So
ft

w
ar

e

Abstraction!

Plan 21

Microarchitecture (Implementation of ISA)

ALURegisters Memory
Instruction
Fetch and

Decode

Computer

Plan 22

Computer

Instruction Set Architecture (HW/SW Interface)
memory

Instruction
Logic

Registers

processor

Encoded
Instructions

Data

Instructions
• Names, Encodings
• Effects
• Arguments, Results

Local storage
• Names, Size
• How many Large storage

• Addresses, Locations

Plan 23

Machine Instructions

24

Hardware

00000010100010101100100000010000

(adds two values and stores the result)

machine
code

program

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

Instruction Set Architecture specification

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Plan 24

Assemblers and Assembly Languages

25

Hardware
assembly
program

Assembly Language specification

Assembler

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

addl %eax, %ecx 00000010100010101100100000010000

machine
code

program

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Plan 25

Compile time Run time

Higher-Level Programming Languages

26

Hardware
assembly
program Assembler

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

addl %eax, %ecx 00000010100010101100100000010000

x = x + y;

machine
code

program

high-level
language
program

Compiler

Programming Language specification

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Plan 26

More and more layers…

• Operating systems
• Virtual machines
• Hypervisors
• Web browsers
• …

28

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Plan 28

I just like to program.
Why study the implementation?

It's fascinating, great for critical thinking.

System design principles apply to software too.

Sometimes system abstractions "leak."
Implementation details affect your programs.

Plan 30

2

int ≠ integer
float ≠ real

int x=…;

x*x >= 0 ?
40000 * 40000 == 1600000000

50000 * 50000 == -1794967296

float a=…, b=…, c=…;

(a + b) + c == a + (b + c) ?
(–2.7e23 + 2.7e23) + 1.0 == 1.0

–2.7e23 + (2.7e23 + 1.0) == 0.0

Plan 31

Ariane 5 Rocket, 1996

Plan 32

Exploded due to cast of
64-bit floating-point number
to 16-bit signed number.
Overflow.

"... a Model 787 airplane … can lose all
alternating current (AC) electrical power …
caused by a software counter internal to the
GCUs that will overflow after 248 days of
continuous power. We are issuing this AD to
prevent loss of all AC electrical power, which
could result in loss of control of the airplane."
--FAA, April 2015

Boeing 787, 2015

Reliability?

Memory Performance

Plan 33

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

several times faster
due to hardware caches

Arithmetic Performance
x / 973 x / 1024

Security

Plan 34

Why take CS 240?

Learn how computers execute programs.
Build software tools and appreciate the value of those you use.
Deepen your appreciation of abstraction.
Learn enduring system design principles.
Improve your critical thinking skills.
Become a better programmer:

Think rigorously about execution models.
Program carefully, defensively.
Debug and reason about programs effectively.
Identify limits and impacts of abstractions and representations.
Learn to use software development tools.

Foundations for:
Compilers, security, computer architecture, operating systems, …

Have fun and feel accomplished!

Plan 35

CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240
Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/

Everything is here.
Please read it.

Plan 36

3

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

