WELLESLEY

CS 240
Foundations of Computer Systems QR;

The Plan

https://cs.wellesley.edu/~cs240/ Plan 1

https://cs.wellesley.edu/~cs240/

Program, Application

Programming Language

Welcome to

CS 240:

Foundations of

Compiler/Interpreter

Operating System

Instruction Set Architecture

H

Computer

Systems Microarchitecture

Digital Logic

-

Devices (transistors, etc.

Solid-State Physics

Today

@ What is CS 240?

Why take CS 2407
How does CS 240 work?

Dive into foundations of computer hardware.

SO0

Plan

CS 111, 230, 231, 235, 251:

What can a program do?

How can a program solve a problem?
How do you structure a program?

How do you know it is correct or efficient?
How hard is it to solve a problem?

How is computation expressed?

What does a program mean?

A BIG question is missing...

CS 240: How do computers work?

® OO /Users/bpw/courses/cs240/cs240f14 /HelloWorld.java
I 3 New | =4 Open | B save I [* Close I | # cut I 3 Copyl [F Paste I & Undo | € Redo | I & Find I | Compile | Reset I I Run I Test |Javadoc I

TSI - public class HelloWorld {

public static void main(String args[]) {
System.out.println("Hello, world!");
}

}

liizzede0 | Console Compiler Output |

Welcome to DrJava. Working directory is /Users/bpw/courses/cs240/cs240f14
> run HelloWorld
Hello, world!

od of Current Document 6:0

ek N
veseas
SRITERLITITES S | - . -
[}

»-;.4.‘
mg/
R

y]

circuitboard image: CC-BY-NC-SA fixit.com

(CS 111, 230, Algorithm, Data Structure, Application
8(231' 235, 251 Programming Language
()
E Compiler/Interpreter
S
O
(7o Operating System

CS 240 Instruction Set Architecture]

v Microarchitecture
(¢°)
S Digital Logic
O .
p -
(g0} Devices (transistors, etc.)
-

Solid-State Physics

Algorithm, Data Structure, Application

Programming Language

Big Idea: Compiler/Interpreter
Abstraction

implementation

Layers manage Microarchitecture
complexity.

Operating System

Instruction Set Architecture

H
H

Digital Logic

Devices (transistors, etc.)

Solid-State Physics

Big Idea: Abstraction

with a few recurring subplots

Simple, general interfaces:

Hide complexity of efficient implementation.

Make higher-level systems easy to build.
But they are not perfect.

Representation of data and programs

Translation of data and programs

Control flow within/across programs

Os and 1s,
electricity

compilers,
assemblers,
decoders

branches,
procedures,
OS

Modern Computer Organization

4)
Executes Stores program
instructions. code + data
during execution.
\ Processor) Memory
Bus

InPUt/ USB Displ
Output Persistent G\letwork C) ISplay

Storage

Plan 19

Modern Computer Organization

4)
Executes Stores program
instructions. code + data
during execution.
\ Processor ’ Memory

Processor repeats:
1. fetch instruction
2. fetch data used by instruction
3. execute instruction on data
4. store result or choose next instruction

Plan 20

Software

Desired computation
represented as instructions.

4b$t

H

actiy, &
Hardware/Software Interface °""§

Hardware

Physical implementation
of instructions and resources.

Computer

Microarchitecture ({mplementation of ISA)

Instruction

Fetch and Registers
Decode

Fla

22

Instruction Set Architecture (HW/SW

processor memory

Instructions _
« Names, Encodings Instruction Encoded

e Effects Logic Instructions

 Arguments, Results
Local storage

* Names, Size

* How many Large storage
 Addresses, Locations

Computer

Plan

23

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Machine Instructions

(adds two values and stores the result)

N\

00000010100010101100100000010000

Instruction Set Architecture specification

N

machine
code
program

Plan 234

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Assemblers and Assembly Languages

addl %Seax, %ecx - 00000010100010101100100000010000

Assembly Language specification

N\

assembly
program

machine
code
program

Plan 255

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s 2020s

Higher-Level Programming Languages

X =X + vy

4

addl %Seax, %Secx - 00000010100010101100100000010000

Programming Language specification

high-level Jssembl machine
language - Compiler o rarr:l Assembler code Hardware
program Prog program

Run time
Plan 296

Compile time

More and more layers...

* Operating systems
* Virtual machines
* Hypervisors

* Web browsers

28
Plan 28

| just like to program.
Why study the implementation?

It's fascinating, great for critical thinking.
System design principles apply to software too.

Sometimes system abstractions "leak."
Implementation details affect your programs.

int #integer
float #real
int x=..;
xX*x >= 0 °?
40000 * 40000
50000 * 50000

1600000000
-1794967296

float a=.., b=.., c=..;

(a + b)) +¢ = a+ (b+c) ?
(-2.7e23 + 2.7e23) + 1.0 == 1.0
—-2.7e23 + (2.7e23 + 1.0) == 0.0

Reliability?

Ariane 5 Rocket, 1996 &

Exploded due to cast of -
64-bit floating-point number |
to 16-bit signed number.
Overflow.

"...a Model 787 airplane ... can lose all

BOEiI‘Ig 787, 2015 alternating current (AC) electrical power ...

caused by a software counter internal to the
GCUs that will overflow after 248 days of
continuous power. We are issuing this AD to
prevent loss of all AC electrical power, which
could result in loss of control of the airplane.”

—-FAA, April 2015 Plan 32

Arithmetic Performance

x /973

x /1024

Memory Performance

void copyji(int src[2048][2048],

int dst[2048] [2048])

{
int i,j;

for (j = 0; j

for (1 = 0;

dst[i] []]

N P A

src[i] [j]-

void copyij(int src[2048][2048],

{

2048; j++)><;or (i = 0; i
< 2048; i++) for (j = 0;

}

int dst[2048] [2048])

int i,3;

2048; i++)

< 2048; j++)
src[i] []];

N« A

dst[i] []]

several times faster
due to hardware caches

Plan 33

DETECTING GHOST

VULNERABILITY

Security

I ‘

The GHOST vulnerability is a buffer overflow condition that can be easily exploited lo¢| HOMEPASE | MYTIMES | TODAY'S PAPER | VIDEO | MOSTPOPULAR | TIMES TOPICS

remotely, which makes it extremely dangerous. This vulnerability is named after the GetHOS | &le New {jork Times

function involved in the exploit.

r-Safe

AII computers are flawed -- and the fix will
take years

by Selena Larson @selenalarson

(© January 26, 2018: 12:07 PM ET

Meltdown and o
Spectre

Business

WORLD = U.S. N../REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION

MEDIA & ADVERTISING WORLD BUSINESS SMALL BUSINESS YOUR MONEY DEALBOOK MARKETS RE

S&P DOW JONES
INDICES

McBRAW HILL FINANIAL L’In matched i!’]novation 5> : % G

B

A Heart Device Is Found Vulnerable to Hacker Attacks

By BARNABY J. FEDER
Published: March 12, 2008

W TWITTER

To the long list of objects vulnerable to attack by computer hackers, (L] LINKEDIN
add the human heart. = SIGNINTO

E-MAIL OR SAVE

. . THIS
The threat seems largely theoretical. But a team of computer security
. . PRINT

researchers plans to report Wednesday that it had been able to gain =

REPRINTS

wireless access to a combination heart defibrillator and pacemaker. an 34

Why take CS 240?

Learn how computers execute programs.
Build software tools and appreciate the value of those you use.
Deepen your appreciation of abstraction.
Learn enduring system design principles.
Improve your critical thinking skills.
Become a better programmer:
Think rigorously about execution models.
Program carefully, defensively.
Debug and reason about programs effectively.

ldentify limits and impacts of abstractions and representations.
Learn to use software development tools.

Foundations for:
Compilers, security, computer architecture, operating systems, ...
Have fun and feel accomplished!

WELLESLEY
CS 240
Foundations of Computer Systems ;R;

https://cs.wellesley.edu/~cs240/

@ Everything is here.
Please read it.

https://cs.wellesley.edu/~cs240/ Plan

36

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

