
CS 251 Fall 2019
Principles of Programming Languages
Ben Woodλ CS 240
Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Shells and Signals

Shells and Signals 1

shell: program that runs other programs

Shells and Signals 2

Shells and the process hierarchy

Shells and Signals 3

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Shell logic
program that runs other programs on behalf of the user

sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
bash “Bourne-Again” Shell, widely used

default on most Unix/Linux/Mac OS X systems
many others...

Shells and Signals 4

while (true) {
Print command prompt.
Read command line from user.
Parse command line.
If command is built-in, do it.
Else fork process to execute command.

in child:
Exec requested command (never returns)

in parent:
Wait for child to complete.

}

Terminal ≠ shell
User interface to shell and other programs.

Graphical (GUI) vs. command-line (CLI)

Command-line terminal (emulator):
Input (keyboard)
Output (screen, sound)

Shells and Signals 5

To wait or not?
A foreground job is a process for which the shell waits.*

A background job is a process for which the shell does not wait*… yet.

*Also: foregound jobs get input from (and "own") the terminal. Background jobs do not.

Shells and Signals 6

$ emacs fizz.txt # shell waits until emacs exits.

$ emacs boom.txt & # emacs runs in background.
[1] 9073 # shell saves background job and is…
$ gdb ./umbrella # immediately ready for next command.

don't do this with emacs unless using X windows version

Signals
Signal: small message notifying a process of event in system

like exceptions and interrupts

sent by kernel, sometimes at request of another process

ID is entire message

Shells and Signals 7

ID Name Corresponding Event Default Action Can
Override?

2 SIGINT Interrupt (Ctrl-C) Terminate Yes

9 SIGKILL Kill process (immediately) Terminate No
11 SIGSEGV Segmentation violation Terminate & Dump Yes

14 SIGALRM Timer signal Terminate Yes

15 SIGTERM Kill process (politely) Terminate Yes

17 SIGCHLD Child stopped or terminated Ignore Yes

18 SIGCONT Continue stopped process Continue (Resume) No

19 SIGSTOP Stop process (immediately) Stop (Suspend) No
20 SIGTSTP Stop process (politely) Stop (Suspend) Yes

…

optional Sending/receiving a signal
Kernel sends (delivers) a signal to a destination process
by updating state in the context of the destination process.

Reasons:
System event, e.g. segmentation fault (SIGSEGV)

Another process used kill system call:
explicitly request the kernel send a signal to the destination process

Destination process receives signal when kernel forces it to react.

Reactions:
Ignore the signal (do nothing)

Terminate the process (with optional core dump)

Catch the signal by executing a user-level function called signal handler
Like an impoverished Java exception handler

Shells and Signals 8

optional

Signals handlers as concurrent flows

Signal handlers run concurrently with main program
(in same process).

Shells and Signals 9

Process A

while (1)
;

Process A

handler(){
…

}

Process B

Time

optional Another view of signal handlers as
concurrent flows

Shells and Signals 10

Signal delivered

Signal received

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

optional

Pending and blocked signals

A signal is pending if sent but not yet received
<= 1 pending signal per type per process
No Queue! Just a bit per signal type.

Signals of type S discarded while process has S signal pending.

A process can block the receipt of certain signals
Receipt delayed until the signal is unblocked

A pending signal is received at most once

Shells and Signals 11

Let's draw a picture...

optional
Process Groups
Every process belongs to exactly one process group (default: parent's group)

Shells and Signals 13

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process

optional

Sending signals from the keyboard
Shell: Ctrl-C sends SIGINT (Ctrl-Z sends SIGTSTP)

to every job in the foreground process group.
SIGINT – default action is to terminate each process
SIGTSTP – default action is to stop (suspend) each process

Shells and Signals 14

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

optional Signal demos
Ctrl-C

Ctrl-Z

kill

kill(pid, SIGINT);

Shells and Signals 15

optional

A program that reacts to
externally generated events (Ctrl-c)

Shells and Signals 26

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
safe_printf("You think hitting ctrl-c will stop me?\n");
sleep(2);
safe_printf("Well...");
sleep(1);
printf("OK\n");
exit(0);

}

main() {
signal(SIGINT, handler); /* installs ctrl-c handler */
while(1) {
}

}

external.c

> ./external
<ctrl-c>
You think hitting ctrl-c will stop me?
Well...OK
>

optional
A program that reacts to internally
generated events

Shells and Signals 27

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler(int sig) {
safe_printf("BEEP\n");

if (++beeps < 5)
alarm(1);

else {
safe_printf("DING DING!\n");
exit(0);

}
}

main() {
signal(SIGALRM, handler);
alarm(1); /* send SIGALRM in

1 second */

while (1) {

}
}

> ./internal
BEEP
BEEP
BEEP
BEEP
BEEP
DING DING!
>

internal.c

optional

Signal summary
Signals provide process-level exception handling

Can generate from user programs
Can define effect by declaring signal handler

Some caveats
Very high overhead

>10,000 clock cycles

Only use for exceptional conditions

Not queued
Just one bit for each pending signal type

Many more complicated details we have not discussed.
Book goes into too much gory detail.

Shells and Signals 36

optional

