WELLESLEY

CS 240
Foundations of Computer Systems Qx;

Shells and Signals

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/

shell: program that runs other programs

3 O = «

.' iTerm Shell Edit View Profiles Toolbelt Window Help

o0 M Ewv- & B signals
Home Insert Design Transitions Animations Slide Show Review View
- v v v v [7v WV v v v v v . v || Height: | 4.17" =
W R 71 - - v U v
% - o v | 4
Remove Change Corrections Color Artistic Transparency L v Quick 2 Bring Send Reorder Align ":[_\v Crop — Width: 6.67" : | Format
Background Picture Effects Styles Forward Backward Objects Pane

5 Unix/Linux Process Hierarchy

shell: program that runs other programs

* ©

10

g integers.pptx

M isa.pptx

_E |

Last login: Tue Nov 10 18:02:56 on ttys009
[09:50 PM] bpw@queets: ~$ cd 240/slides
[09:50 PM] bpw@queets: ~/240/slides$ 1s
alu.pptx mem. pptx
arrays.pptx memalloc.pptx
beyond240.pptx memalloc.pptx.pdf
bits.pptx membugs . pptx
buffer.pptx mini-mips.pdf

f cache.pptx mini-mips2.pdf
datapath.pptx mux . pptx
gates-notes.txt os-ecf.pptx
gates.pptx pc.ppt
gc.pptx @

procedure-stack.pptx

process.pptx
ram.pptx

java.pptx seq.pptx

[09:50 PM] bpw@queets: ~/240/slides$ [J

intro.pptx

s *
PYORA ¥ =& 9) SmrdT

2. bpw@queets: ~/240/slides (bash)

signals.pptx
stuff.pptx
virtual-memory.pptx
x86-basics.pptx
x86-control.pptx
~$buffer.pptx
~$datapath.pptx
~$mux . pptx
~$procedure-stack.pptx
~$ram.pptx
~$seq.pptx
~$signals.pptx
~$x86-basics.pptx
~$x86-control.pptx

ot Design _Transitions _ Animations _Slide Show

Sides

4 < A= av| Ap

B 1 U obe x* X; AV @3 A Pusgan

shell

program that r
sh orig

programs on behalf of the user
Il (Stephen Bourne, AT&T Bell Labs, 1977)

in parent:
Wait for child to complete.

}

Execute requested command with exec.
never re

turns)

STEEE R

OB =

e e e

Shells and the process hierarchy

[0]

Daemon

ﬁ —

Login shell

Shell logic

program that runs other programs on behalf of the user

sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
bash “Bourne-Again” Shell, widely used

default on most Unix/Linux/Mac OS X systems
many others...

while (true) {
Print command prompt.
Read command line from user.
Parse command line.
If command 1s built-in, do 1it.
Else fork process to execute command.
in child:
Exec requested command (never returns)
1in parent:
Wait for child to complete.

Terminal # shell

User interface to shell and other programs.
Graphical (GUI) vs. command-line (CLI)

Command-line terminal (emulator):
Input (keyboard)
Output (screen, sound)

To wait or not?

A foreground job is a process for which the shell waits.*

S emacs fizz.txt # shell waits until emacs exits.

A background job is a process for which the shell does not wait*... yet.

$ emacs boom.txt & # emacs runs in background.
[1] 9073 # shell saves background job and is..
$ gdb ./umbrella # immediately ready for next command.

don't do this with emacs unless using X windows version

*Also: foregound jobs get input from (and "own") the terminal. Background jobs do not.

Signals

Signal: small message notifying a process of event in system

like exceptions and interrupts

sent by kernel, sometimes at request of another process

ID is entire message

ID

11
14
15
17
18
19
20

Name

SIGINT
SIGKILL
SIGSEGV
SIGALRM
SIGTERM
SIGCHLD
SIGCONT
SIGSTOP
SIGTSTP

Corresponding Event

Interrupt (Ctrl-C)

Kill process (immediately)
Segmentation violation
Timer signal

Kill process (politely)

Child stopped or terminated
Continue stopped process
Stop process (immediately)

Stop process (politely)

Default Action

Terminate
Terminate
Terminate & Dump
Terminate
Terminate

Ignore

Continue (Resume)
Stop (Suspend)
Stop (Suspend)

Can
Override?

Yes
No
Yes
Yes
Yes
Yes
No
No

Yes

Sending/receiving a signal

Kernel sends (delivers) a signal to a destination process
by updating state in the context of the destination process.

Reasons:

System event, e.g. segmentation fault (SIGSEGV)

Another process used kill system call:
explicitly request the kernel send a signal to the destination process

Destination process receives signal when kernel forces it to react.

Reactions:
Ignore the signal (do nothing)
Terminate the process (with optional core dump)

Catch the signal by executing a user-level function called signal handler
Like an impoverished Java exception handler

Signals handlers as concurrent flows

Signal handlers run concurrently with main program
(in same process).

Process A Process A Process B

while (1) handler () {

}

Time

Another view of signal handlers as

concurrent flows

Signal delivered —>

Signal received —>

Process A

ICUFF

Inext

Process B

user code (main)

kernel code } context switch
user code (main)

kernel code } context switch
user code (handler)

kernel code

user code (main)

Pending and blocked signals

A signal is pending if sent but not yet received
<=1 pending signal per type per process

No Queue! Just a bit per signal type.

Signals of type S discarded while process has S signal pending.

A process can block the receipt of certain signals
Receipt delayed until the signal is unblocked

A pending signal is received at most once

Let's draw a picture...

Every process belongs to exactly one process group (default: parent's group)

Process Groups

pid=40
pgid=40

Background Background
process group 32 process group 40
getpgrp ()

Return process group of current process

setpgid()
Change process group of a process

Shells and Signals

13

Sending signals from the keyboard‘

Shell: Ctrl-C sends SIGINT (Ctrl-Z sends SIGTSTP)
to every job in the foreground process group.

SIGINT — default action is to terminate each process
SIGTSTP — default action is to stop (suspend) each process

pid=20

1d=40
pgid=20 Lo

pgid=40

Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20 Shells and Signals 14

Signal demos

Ctrl-C
Ctrl-Z
kill

kill (pid, SIGINT);;

Shells and Signals 15

A program that reacts to
externally generated events (Ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler (int sig) {
safe printf ("You think hitting ctrl-c will stop me?\n");

sleep(2) ;

safe printf("Well...");
sleep (1) ; > ./external
printf ("OK\n") ; <ctrl—§> o .
! You think hitting ctrl-c will stop me?
exit (0) ;
} Well...OK
>
main() {

signal (SIGINT, handler); /* installs ctrl-c handler */
while (1) {
}

}

external.c

A program that reacts to internally

generated events

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler (int sig) {
safe printf ("BEEP\n");

if (++beeps < 5)
alarm(1l) ;
else {
safe printf ("DING DING'\n");
exit (0) ;
}
}

main () {
signal (SIGALRM, handler);
alarm(l); /* send SIGALRM in
1 second */

while (1) {

}
}

internal.c

> ./internal
BEEP

BEEP

BEEP

BEEP

BEEP

DING DING!

>

Signal summary

Signhals provide process-level exception handling
Can generate from user programs

Can define effect by declaring signal handler

Some caveats

Very high overhead
>10,000 clock cycles
Only use for exceptional conditions
Not queued
Just one bit for each pending signal type

Many more complicated details we have not discussed.

Book goes into too much gory detail.

