
Threads

A thread is an independent execution sequence within a single process.
• Operating systems and programming languages generally allow processes

to run two or more functions simultaneously via threading.
• The stack segment is subdivided into multiple miniature stacks, one for

each thread.
• The thread manager time slices and switches between threads in much the

same way that the OS scheduler switches between processes.
• In fact, threads are often called lightweight processes.
• Each thread maintains its own stack, but all threads share the same text,

data, and heap segments.

Threads

Pros and Cons of Threads vs.Processes

• Pro: it's easier to support communication between threads, because
they run in the same virtual address space.
• Con: there's no memory protection, since virtual address space is

shared. Race conditions and deadlock threats need to be mitigated,
and debugging can be difficult. Many bugs are hard to reproduce,
since thread scheduling isn't predictable.
• Pro and con: Multiple threads can access the same globals.
• Pro and con: One thread can share its stack space (via pointers) with

others.

pthreads

• ANSI C doesn't provide native support for threads.
• But pthreads, which comes with all standard UNIX and Linux

installations of gcc, provides thread support, along with other related
concurrency directives.
• The primary pthreads data type is the pthread_t, which is a type used

to manage the execution of a function within its own thread of
execution.
• The only pthreads functions we'll need are pthread_create and

pthread_join.

Examine introverts! Key points of introverts
• Introverts declares an array of six pthread_t handles.

• The program initializes each pthread_t (via pthread_create) by installing recharge
as the thread routine each pthread_t should execute.

• All thread routines take a void * and return a void *. That's the best C can do to

support generic programming.

• The second argument to pthread_create is used to set a thread priority and other

attributes. We can just pass in NULL if all threads should have the same priority.

That's what we do here.

• The fourth argument is passed verbatim to the thread routine as each thread is

launched. In this case, there are no meaningful arguments, so we just pass in

NULL.

• Each of the six recharge threads is eligible for processor time the instant the

surrounding pthread_t has been initialized.

• The six threads compete for thread manager's attention, and we have very little

control over what choices it makes when deciding what thread to run next.

pthread_join waits

• pthread_join is to threads what waitpid is to processes.
• The main thread of execution blocks until the child threads all exit.

The second argument to pthread_join can be used to catch a thread
routine's return value.
• If we don't care to receive it, we can pass in NULL to ignore it.

Deadlocks and Race Conditions

• Our next program will seem harmless but has a fatal flaw.
• Here we all introduce ourselves on the last day of classes.

Examine confused-friends! What went wrong?
• Note that meetup dereferences its incoming parameter and that pthread_create

accepts the address of the surrounding loop's index variable i via its fourth

parameter. pthread_create's fourth argument is always passed verbatim as the

single argument to the thread routine.

• The problem? The main thread advances i without regard for the fact that i's

address was shared with many child threads.

• At first glance, it's easy to absentmindedly assume that pthread_create captures

not just the address of i, but the value of i itself. That assumption of course, is

incorrect, as it captures the address and nothing else.

• The address of i (even after it goes out of scope) is constant, but its contents

evolve in parallel with the execution of the meetup threads.

• *(int *)args in meetup takes a snapshot of whatever i happens to contain at the

time it's evaluated.

• This is an example of a race condition and is typical of the types of problems that

come up when multiple threads share access to the same data.

Here the fix is simple!

Instead of passing i and getting the names within meetup, let’s pass
the address to each name (i.e., char *) as the argument to the thread
routine.

Examine friends!

Sharing data

• Sharing data can be complicated and dangerous in concurrent
execution.
• Concurrent programming often makes use of specific tools to control

how data is shared between threads
• Mutexes

• Semaphores

• Condition variables

• Etc.

Examine robberBaronsBroken!

Something is wrong!

• How do we know?
• Printing is out of order at the end
• Negative value for the stash?

• Multiple threads are modifying the global variable stash
• Is it possible for two threads to evaluate stash > 0 as True with only $10000

left and then both subtract from stash?
• Yep! Say thread A evaluates stash > 0 and then the thread manager switches to

thread B before thread A subtracts the steal money from the stash.
• Thread B executes fully bringing the stash to $0.
• Thread A resumes execution and subtracts its $10000 bringing the total to -$10000.
• Yikes!

Mutexes

• A mutex is a mutual exclusion object.
• It is a locking mechanism to protect shared data or critical regions of code

so that only one thread can be permitted access.
• Here we need to protect the stash so that only one robber can modify the

stash at a given time.
• We declare a mutex with pthread_mutex_t.
• To lock a piece of code, we use pthread_mutex_lock().

• When a thread tries to acquire a lock, it will either take the lock if it is not being
currently used or it will wait until the lock becomes available.

• To unlock a piece of code, we use pthread_mutex_unlock().
• Note that the only code that is allowed to unlock the lock is the thread that currently

has the lock

Examine robberBarons!

